A HIGH-CAPACITY REVERSIBLE DATA HIDING SCHEME BASED ON PAIRWISE PEE AND EMD

Main Article Content

Thanh Van Huynh
Son Thai Nguyen

Abstract

This paper proposes a high embedding capacity reversible data hiding algorithm using pairwise prediction error expansion and exploiting modification direction. In this algorithm, the original image is first decomposed into 4 × 4 blocks, and each block is divided into inner and outer sub-blocks. Next, the standard deviation (δ) of the pixels in the outer sub-block is used to evaluate the statistical properties of the inner sub-block. If the value δ of the outer sub-block is less than a given threshold, the inner sub-block is considered embeddable, otherwise, it is labeled non-embeddable. A pairwise prediction error expansion mapping is adopted for embeddable inner sub-blocks. Additionally, to improve the embedding capacity of the proposed scheme, an exploiting modification direction table is developed to modify the prediction error histogram. Through careful selection of error pairs for mapping using the exploiting modification direction table, the quality of the stego image can be preserved while the embedding capacity of the proposed method can be significantly improved. Experimental results illustrate that our method achieves better performance than previous works, especially in terms of image quality.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Huynh T, Nguyen S. A HIGH-CAPACITY REVERSIBLE DATA HIDING SCHEME BASED ON PAIRWISE PEE AND EMD. journal [Internet]. 16Aug.2024 [cited 18Oct.2024];14(8). Available from: https://journal.tvu.edu.vn/index.php/journal/article/view/4269
Section
Articles

References

[1] Wu W, Li H. A novel scheme for random sequential
high-capacity data hiding based on PVD and LSB.
Signal, Image and Video Processing. 2024;18(3):
2277–2287. https://doi.org/10.1007/s11760-023
-02900-9.
[2] Lu TC, Vo TN. Reversible steganography techniques:
A survey. In: Hassaballah M (ed.) Digital Media
Steganography. Academic Press; 2020. p.189–213.
https://doi.org/10.1016/B978-0-12-819438-6.00018-
9.
[3] Tian J. Reversible data embedding using a difference expansion. IEEE Transactions on Circuits and
Systems for Video Technology. 2003;13(8): 890–896.
https://doi.org/10.1109/TCSVT.2003.815962.
[4] Al-Qershi OM, Khoo BE. High capacity
data hiding schemes for medical images
based on difference expansion. Journal of
Systems and Software. 2011;84(1): 105–112.
https://doi.org/10.1016/j.jss.2010.08.055.
[5] Arham A, Nugroho HA, Adji TB. Multiple layer
data hiding scheme based on difference expansion of quad. Signal Processing. 2017;137: 52–62.
https://doi.org/10.1016/j.sigpro.2017.02.001.
[6] Sharma S, Zou JJ, Fang G. A single watermark based
scheme for both protection and authentication of
identities. IET Image Processing. 2022;16(12): 3113–
3132. https://doi.org/10.1049/ipr2.12542.
[7] Maniriho P, Mahoro LJ, Bizimana Z, Niyigaba E, Ahmad T. Reversible difference expansion multi-layer data hiding technique for
medical images. International Journal of Advances in Intelligent Informatics. 2021;7(1): 1–11.
https://doi.org/10.26555/ijain.v7i1.483.
[8] Ni Z, Shi HQ, Ansari N, Su W. Reversible data
hiding. IEEE Transactions on Circuits and Systems for Video Technology. 2006;16(3): 354–362.
https://doi.org/10.1109/TCSVT.2006.869964.
[9] Fu DS, Jing ZJ, Zhao SG, Fan J. Reversible data
hiding based on prediction-error histogram shifting
and EMD mechanism. AEU - International Journal of
Electronics and Communications. 2014;68(10): 933–
943. https://doi.org/10.1016/j.aeue.2014.04.015.
[10] Li X, Zhang W, Gui X, Yang B. Efficient reversible data hiding based on multiple histograms
modification. IEEE Transactions on Information
Forensics and Security. 2015;10(9): 2016–2027.
https://doi.org/10.1109/TIFS.2015.2444354.
[11] Rad RM, Wong K, Guo JM. Reversible data hiding
by adaptive group modification on histogram of prediction errors. Signal Processing. 2016;125: 315–328.
https://doi.org/10.1016/j.sigpro.2016.02.001.
[12] Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ.
Reversible watermarking algorithm using sorting and
prediction. IEEE Transactions on Circuits and Systems for Video Technology. 2009;19(7): 989–999.
https://doi.org/10.1109/TCSVT.2009.2020257.
[13] Li X, Li J, Li B, Yang B. High-fidelity
reversible data hiding scheme based on pixelvalue-ordering and prediction-error expansion.
Signal Processing. 2013;93(1): 198–205.
https://doi.org/10.1016/j.sigpro.2012.07.025.
[14] Kumar R, Jung KH. Enhanced pairwise IPVObased reversible data hiding scheme using rhombus
context. Information Sciences. 2020;536: 101–119.
https://doi.org/10.1016/j.ins.2020.05.047.
[15] Kumar N, Kumar R, Malik A, Singh S, Jung
KH. Reversible data hiding with high visual quality using pairwise PVO and PEE. Multimedia
Tools and Applications. 2023;82(20): 30733–30758.
https://doi.org/10.1007/s11042-023-14867-3.
[16] Saini AK, Singh S. HSB based reversible data hiding using sorting and pairwise expansion. Journal
of Information Security and Applications. 2024;80:
103663. https://doi.org/10.1016/j.jisa.2023.103663.
[17] Ou B, Li X, Zhao Y, Ni R, Shi YQ.
Pairwise prediction-error expansion for efficient
reversible data hiding. IEEE Transactions on
Image Processing. 2013;22(12): 5010–5021.
https://doi.org/10.1109/TIP.2013.2281422.
[18] Peng F, Li X, Yang B. Improved PVObased reversible data hiding. Digital
Signal Processing. 2014;25: 255–265.
https://doi.org/10.1016/j.dsp.2013.11.002.
[19] Ou B, Li X, Wang J. High-fidelity reversible data
hiding based on pixel-value-ordering and pairwise
prediction-error expansion. Journal of Visual Communication and Image Representation. 2016;39: 12–
23. https://doi.org/10.1016/j.jvcir.2016.05.005.
[20] Gonzalez RC, Woods RE, Eddins SL. Image Databases.
http://www.imageprocessingplace.com/root_files_V3/
image_databases.htm [Accessed 28th October 2023].