POTENTIAL BENEFITS OF ARBUSCULAR MYCORRHIZA FUNGI IN SUSTAINABLE AGRICULTURAL CULTIVATION

  • Luu Thi Thuy Hai Tra Vinh University
  • Nga Huynh School of Agriculture and Aquaculture, Tra Vinh University
  • Linh Truc Le School of Agriculture and Aquaculture, Tra Vinh University
Keywords: Arbuscular Mycorrhiza, chịu hạn mặn, đối kháng sinh học, phân bón sinh học

Abstract

The Arbuscular Mycorrhiza fungi have a mutualistic relationship with 80% of terrestrial plants. Arbuscular Mycorrhiza fungi are considered as a biofertilizer source because of their positive effects on plant growth and
productivity They can help to reduce the amount of chemical fertilizers by up to 50% due to their ability in enhancing crops to uptake mineral nutrients efficently such as nitrogen, phosphorus, potassium, calcium, zinc. . . thereby increasing crop yield. Moreover, this endosymbiotic fungus also shows its potential as a biopesticide due to its ability to biologically antagonize a wide range of fungi, viruses, and nematodes, which cause diseases on plants. Besides, Arbuscular Mycorrhiza fungi also help plants to resist to abiotic streeses such as drought, salinity, and toxicity of heavy metals. The glomalin compound secreted by mycorrhizal fungi has the ability to
bind tiny soil particles together to form a stable soil structure and aggregates, helping to improve soil qualitỵ Thus, Arbuscular Mycorrhiza fungi have a high use potential in sustainable agricultural development under the context of climate change such as drought, salinity intrusion.

Downloads

Download data is not yet available.

References

[1] Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper
TW. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia. 2012;1694(): 895–904.
[2] Bowles TM, Barrios-Masias FH, Carlisle EA,
Cavagnaro TR, Jackson Le Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics
under deficit irrigation in field conditions. Science Total Environment. 2016;566: 1223–1234. Doi:
101016/j.scitotenv.2016.05.178.
[3] Dhalaria R, Kumar, D, Kumar H, Nepovimova E,
Kuca K, Torequl Islam M, Verma R. Arbuscular ˇ
mycorrhizal fungi as potential agents in ameliorating
heavy metal stress in plants. Agronomy. 2020;10: 1–
22. Doi:103390/agronomy10060815..
[4] Ganugi P, Masoni A, Pietramellara G, Benedettelli
S. A review of studies from the last twenty years on
plant–arbuscular mycorrhizal fungi associations and
their uses for wheat crops. Agronomy. 2019;9(12): 1–
15. Doi.org/ 10.3390/agronomy9120840.
[5] Smith SE, Read DJ. The symbionts forming arbuscular mycorrhizas. In Mycorrhizal symbiosis. 3rd ed.
Academic, London. 2008; p. 13–41.
[6] Zou YN, Srivastava AK, Wu QS. Glomalin: a potential soil conditioner for perennial fruits. International
Journal of Agriculture and Biology (IJAB). 2016;18:
293–297. Doi: 1017957/IJAB/15.0085..
[7] Begum N, Qin C, Ahanger MA, Raza S, Khan
MI, Ashraf M, Ahmed N, Zhang L. Role of
arbuscular mycorrhizal fungi in plant growth
regulation: implications in abiotic stress tolerance Frontiers in plant science. 2019;10: 1–15.
Doi.org/10.3389/fpls.2019.01068.
[8] Pozo MJ, Azcon-Aguilar‘ C, Dumas-Gaudot E, Barea
JM. Beta-1,3- Glucanase activities in tomato roots
inoculated with arbuscular mycorrhizal fungi and/or
Phytophthora parasitica and their possible involvement in bioprotection. Plant Science. 1999;141: 149–
157.
[9] Krings M, Taylor TN, Hass H, Kerp H, Dotzler N,
Hermsen EJ. Fungal endophytes in a 400-million-yrold land plant: infection pathways, spatial distribution,
and host responses. New Phytologist. 2007;174(3):
648–657.
[10] Selosse MA, Strullu-Derrien C, Martin FM, Kamoun
S, Kenrick P. Plants, fungi and oomycetes: a 400-
million-year affair that shapes the biosphere. New
Phytologist. 2015;206: 501–506.
[11] Simon L, Bousquet J, Levesqué RC, Lalonde M.
Origin and diversification of endomycorrhizal fungi
and coincidence with vascular land plants. Nature.
1993;363(6424): 67–69.
[12] Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith
ME, Berbee ML, Bonito G, Corradi N, Grigoriev
I, Gryganskyi A, James TY. A phylum-level phylogenetic classification of zygomycete fungi based on
genome-scale data. Mycologia. 2016;108(5): 1028–
1046.
[13] Redecker D, Schu¨ßler A, Stockinger H, Sturmer SL, ¨
Morton JB, Walker C. An evidence-based consensus
for the classification of arbuscular mycorrhizal fungi
(Glomeromycota). Mycorrhiza. 2013;23(7): 515–531.
[14] Wright DP, Read DJ, Scholes JD. Mycorrhizal sink
strength influences whole plant carbon balance of
Trifolium repens L. Plant, Cell & Environment.
1998;21(9): 881–891.
[15] Thirkell TJ, Pastok D, Field KJ. Carbon for nutrient exchange between arbuscular mycorrhizal fungi
and wheat varies according to cultivar and changes
in atmospheric carbon đioxie concentration. Global
change biology. 2020;26(3): 1725–1738.
[16] Malusa E, Vassilev N. A contribution to set a legal
framework for biofertilisers. Applied microbiology
and biotechnology. 2014;98(15): 6599–6607.
[17] Syibli MA, Muhibuđin A and Djauhari S. Arbuscular mycorrhiza fungi as an indicator of soil fertilitỵ AGRIVITA, Journal of Agricultural Science.
2013;35(1): 44–53.
[18] Diaz’ Franco A, Espinosa Ramirez’ M, Ortiz Chairez’
FẸ Reducción de la fertilización inorganicá mediante
Micorriza Arbuscular en sorgọ Revista internacional
de contaminación ambiental. 2019;35(3): 683–692.
Abstract in English.
[19] Al-Khaliel AS. Effect of salinity stress on mycorrhizal
association and growth response of peanut infected
by Glomus mosseaẹ. Plant, Soil and Environment.
2010;56(7): 318–324.
[20] Nguyen TD, Cavagnaro TR , Watts-Williams SJ.
The effects of soil phosphorus and zinc availability
on plant responses to mycorrhizal fungi: a physiological and molecular assessment. Scientific reports.
2019;9(1): 1–13.
[21] Huang GM, Zou YN, Wu QS, Xu YJ, Kuca K. ˇ
Mycorrhizal roles in plant growth, gas exchange, root
morphology, and nutrient uptake of walnuts. Plant,
Soil and Environment. 2020;66(6): 295–302.
[22] Dod JC, Bođington CL, Rodriguez A, GonzalezChavez C, Mansur I. Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form,
function and detection. Plant and soil. 2000;226(2):
131–151.
[23] Ortas¸ ˙ I, Akpinar C, Demirbas Ạ, Sari N.
Mycorrhizae-inoculated vegetable seedling
production and use in field experiments for
ecological farming. Acta Horticulturae. 2019;1253:
93–100. doi: 10.17660/ActaHortic.2019.1253.13.
[24] Hou L, Zhang X, Feng G, Li Z, Zhang Y, Cao
N. Arbuscular mycorrhizal enhancement of phosphorus uptake and yields of maize under high planting
density in the black soil region of China. Scientific
reports. 2021;11(1): 1–11.
[25] Andrino A, Guggenberger G, Kernchen S, Mikutta
R, Sauheitl L, Boy J. Production of organic acids by
Arbuscular Mycorrhizal Fungi and their contribution
in the mobilization of phosphorus bound to iron
oxides. Frontiers in plant science. 2021;12: 1–13.
doiorg/10.3389/fpls.2021.661842..
[26] Ombodi A, GoGan’ AC, Birkas Z, Kappel N,
Morikawa CK, Koczka N., Posta K. Effects of mycorrhiza inoculation and grafting for sweet pepper
(Capsicum annuum L.) crop under low-tech greenhouse conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2019;47(4): 1238–1245.
[27] Campo S, Martin-Cardosó H, Olivé M, Pla E, CatalaForner M, Martinez-Eixarch’ M, San Segundo B.
Effect of root colonization by arbuscular mycorrhizal
fungi on growth, productivity and blast resistance in
rice. Rice. 2020;13(1): 1–14.
[28] Ali MM, Sani MN, Aminuzzaman FM, Mridha MAU.
Influence of arbuscular mycorrhizal fungi on growth,
nutrient uptake and disease suppression of some
selected vegetable crops. Azarian Journal of Agriculture. 2018;5(6): 190–196.
[29] Fathi A, Tari DB. Effect of drought stress and its
mechanism in plants. International Journal of Life
Sciences. 2016;10(1): 1–6.
[30] Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini
R, Guerrieri Ẹ Insights on the impact of arbuscular
mycorrhizal symbiosis on tomato tolerance to water
stress. Plant Physiology. 2016;171(2): 1009–1023.
[31] Zeighami Nejad K, Ghasemi M, Shamili M,
Damizadeh GR. Effect of mycorrhiza and vermicompost on drought tolerance of lime seedlings (Citrus
aurantifolia cv. Mexican Lime). International Journal
of Fruit Science. 2020;20(3): 646–657.
[32] Hu Y, Xie W, Chen B. Arbuscular mycorrhiza improved drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key
metabolites. Chemical and Biological Technologies in
Agriculture. 2020;7(1): 1–14.
[33] Boutasknit A, Baslam M, Ait-El-Mokhtar M, Anli
M, Ben-Laouane R, Douira A, El Modafar C, Mitsui T, Wahbi S, Međich A. Arbuscular mycorrhizal
fungi mediate drought tolerance and recovery in
two contrasting carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and
(in) organic adjustments. Plants. 2020;9(1): 1–19.
doi:103390/plants9010080.
[34] Jabborova D, Annapurna K, Al-Sadi AM, Alharbi SA,
Datta R, Zuan ATK. Biochar and Arbuscular mycorrhizal fungi međiate enhanced drought tolerance
in Okra (Abelmoschus esculentus) plant growth, root
morphological traits and physiological properties.
Saudi Journal of Biological Sciences. 2021;28(10):
5490–5499.
[35] Abdi N, van Biljon A, Steyn C, Labuschagne
MT. Bread Wheat (Triticum aestivum) Responses
to Arbuscular Mycorrhizae inoculation under
drought Stress conditions. Plants. 2021;10(9): 1–13.
doi.org/10.3390/plants10091756.
[36] Bahadur A, Batool A, Nasir F, Jiang S, Mingsen
Q, Zhang Q, Pan J, Liu Y, Feng H. Mechanistic
insights into arbuscular mycorrhizal fungi-međiate
drought stress tolerance in plants. International journal of molecular sciences. 2019;20 (17): 1–18. doi:
10.3390/ijms20174199.
[37] Essahibi A, Benhiba L, Babram MA, Ghoulam C,
Qaddoury A. Influence of arbuscular mycorrhizal
fungi on the functional mechanisms associated with
drought tolerance in carob (Ceratonia siliqua L.).
Trees. 2018;32(1): 87–97.
[38] Farias-Rodríguez’ R, Mellor RB, Arias C, Pena- ˜
Cabriales JJ. The accumulation of trehalose in nodules of several cultivars of common bean (Phaseolus vulgaris) and its correlation with resistance to
drought stress. Physiologia Plantarum. 1998;102(3):
353–359.
[39] Barzaná G, Aroca R, Bienert GP, Chaumont F, RuizLozano JM. New insights into the regulation of
aquaporins by the arbuscular mycorrhizal symbiosis
in maize plants under drought stress and possible
implications for plant performance. Molecular PlantMicrobe Interactions. 2014;27(4): 349–363.
[40] Machado RMA, Serralheiro RP. Soil salinity: effect
on vegetable crop growth. Management practices to
prevent and mitigate soil salinization. Horticulturae.
2017;3(2): 1–13. doi:10.3390/horticulturae3020030.
[41] Ebrahim MK, Saleem AR. Alleviating salt stress in
tomato inoculated with mycorrhizae: Photosynthetic
performance and enzymatic antioxidants. Journal of
Taibah University for Science. 2017;11(6): 850–860.
[42] Al-Karaki GN. Effects of mycorrhizal fungi inoculation on green pepper yield and mineral uptake under
irrigation with saline water. Adv. Plants & Agriculture
Research. 22017;6(5): 164–169.
[43] Fayaz F, Zahedi M. Beneficial effects of arbuscular
mycorrhizal fungi on wheat (Triticum aestivum L.)
nutritional status and tolerance indices under soil
salinity stress. Journal of Plant Nutrition. 2021; 1–
17. doi.org/10.1080/01904167.2021.1952228.
[44] Duc NH, Vo AT, Hadidi I, Đaoo H, Posta K.
Arbuscular mycorrhizal fungi improve tolerance of
medicinal plant Eclipta prostrata (L.) and induce
major changes in polyphenol profiles under salt
stresses. Frontiers in Plant Science. 2021;11: 1–18.
doi.org/10.3389/fpls.2020.612299.
[45] Elhindi KM, ElĐin AS, Elgorban AM. The impact of
arbuscular mycorrhizal fungi in mitigating salt-inđuce
adverse effects in sweet basil (Ocimum basilicum
L.). Saudi journal of biological sciences. 2017;24(1):
170–179.
[46] Klinsukon C, Lumyong S, Kuyper TW, Boonlue
S. Colonization by arbuscular mycorrhizal fungi
improves salinity tolerance of eucalyptus (Eucalyptus camaldulensis) seedlings. Scientific Reports.
2021;11(1): 1–10.
[47] Fang S, Hou X, Liang X. Response
Mechanisms of plants under Saline-Alkali
stress. Frontiers in Plant Science. 2021;12: 1–
20. doi.org/10.3389/fpls.2021.667458.
[48] Qin W, Yan H, Zou B, Guo R, Ci D, Tang Z,
Zou X, Zhang X, Yu X, Wang Y, Si T. Arbuscular mycorrhizal fungi alleviate salinity stress in
peanut: Evidence from pot-grown and field experiments. Food and Energy Security. 2021; 1–24.
doi.org/10.1002/fes3.314.
[49] Gupta B, Huang B. Mechanism of salinity tolerance
in plants: physiological, biochemical, and molecular
characterization. International journal of genomics.
2014;2014: 1–18. doi.org/10.1155/2014/701596.
[50] Vrba J, Kopacek’ J, Bittl T, Nedoma J, Strojsová ˇ
A, Nedbalová L, Kohout L, Fott J. A key role of
aluminium in phosphorus availability, food web structure, and plankton dynamics in strongly aciđifie lakes.
Biologia. 2006;61 (SUPP20/): 441–451.
[51] Arif N, Yadav V, Singh S, Singh S, Ahmad P,
Mishra RK, Sharma S, Tripathi DK, Dubey NK,
Chauhan DK. Influence of high and low levels of
plant-beneficial heavy metal ions on plant growth
and development. Frontiers in environmental science..
2016;4: 1–11. doi.org/10.3389/fenvs.2016.00069.
[52] Joner EJ, Briones R, Leyval C. Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil.
2000;226: 227–234.
[53] Gonzalez-Guerrero M, Melville LH, Ferrol N, Lott
JN, Azcon-Aguilar C, Peterson RL. Ultrastructural
localization of heavy metals in the extraradical
mycelium and spores of the arbuscular mycorrhizal
fungus Glomus intraradices. Canadian Journal of
Microbiology. 2008;54 (2): 103–110.
[54] Ferrol N, Tamayo E, Vargas P. The heavy metal
paradox in arbuscular mycorrhizas: from mechanisms
to biotechnological applications. Journal of experimental botany. 2016;67(22): 6253–6265.
[55] Yu Z, Zhao X, Su L, Yan K, Li B, He Y, Zhan F.
Effect of an arbuscular mycorrhizal fungus on maize
growth and cadmium migration in a sand column. Ecotoxicology and Environmental Safety. 2021;225:
1–9. doi.org/10.1016/j.ecoenv.2021.112782.
[56] Herrera H, Valadares R, Oliveira G, Fuentes A, Almonacid L, do Nascimento, SV, Bashan Y, Arriagada
C. Adaptation and tolerance mechanisms developed
by mycorrhizal Bipinnula fimbriata plantlets (Orchidaceae) in a heavy metal-polluted ecosystem. Mycorrhiza. 2018;28 (7): 651–663.
[57] Abdelhameed RE, Metwally RẠ Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. International journal of phytoremediation. 2019;21(7):
663–671.
[58] You Y, Wang L, Ju C, Wang G. Ma F, Wang Y, Yang
D. Effects of arbuscular mycorrhizal fungi on the
growth and toxic element uptake of Phragmites australis (Cav.) Trin. ex Steud under zinccadmiúm stress.
Ecotoxicology and Environmental Safety. 2021;213:
1–10.
[59] Goicoechea N. Mycorrhizal fungi as bioprotectors
of crops against Verticillium Wilt—A hypothetical
scenario under changing environmental conditions.
Plants. 2020;9(11): 1–15.
[60] Diagne N, Ngom M, Djighaly PI, Fall D, Hocher
V, Svistoonoff S. Roles of arbuscular mycorrhizal
fungi on plant growth and performance: Importance
in biotic and abiotic stressed regulation. Diversity.
2020;12: 1–25.
[61] Villani A, Tommasi F, Paciolla C. The Arbuscular Mycorrhizal fungus Glomus viscosum improves
the tolerance to Verticillium Wilt in artichoke by
modulating the antioxidant defense systems. Cells.
2021;10(8): 1–15.
[62] Berdeni D, Cotton TEA, Daniell TJ, Bidartondo MI,
Cameron Đ, Evans KL. The effects of arbuscular
mycorrhizal fungal colonisation on nutrient status,
growth, productivity, and canker resistance of apple
(Malus pumila). Frontiers in microbiology. 2018;9:
1–14.
[63] Al-Hmoud G, Al-Momany Ạ Effect of four mycorrhizal products on Fusarium root rot on different
vegetable crops. Journal of Plant Pathology & Microbiology. 2015;6(2): 1–5.
[64] Song Y, Chen D, Lu K, Sun Z, Zeng R. Enhanced
tomato disease resistance primed by arbuscular mycorrhizal fungus. Frontiers in Plant Science. 2015;6:
1–13.
[65] Kobra N, Jalil K, Youbert G. Arbuscular mycorrhizal
fungi and biological control of Verticillium-wilted
cotton plants. Archives of Phytopathology and Plant
Protection. 2011;44(10): 933–942.
[66] Schouteden N, De Waele D, Panis B, Vos CM. Arbuscular mycorrhizal fungi for the biocontrol of plantparasitic nematodes: A review of the mechanisms
involved. Frontiers in Microbiology. 2015;6: 1–2.
[67] Vos C, Schouteden N, van Tuinen D, Chatagnier O,
Elsen A, De Waele D, Panis B, Gianinazzi-Pearson
V. Mycorrhiza-inđuce resistance against the root–knot
nematode Meloidogyne incognita involves priming of
defense gene responses in tomato. Soil Biology and
Biochemistry. 2013;60: 45–54.
[68] Pham TT, Giang BL, Nguyen NH, Dong Yen PN,
Minh Hoang VD, Lien Ha BT, Le NTT. Combination
of mycorrhizal symbiosis and root grafting effectively
controls nematode in replanted coffee soil. Plants.
2020;9(5): 1–11.
[69] Zeng RS. Disease resistance in plants through mycorrhizal fungi inđuce allelochemicals. In Allelochemicals: biological control of plant pathogens and diseases. Springer, Đorrecht. 2006; p. 181–192.
[70] Li Y, Liu Z, Hou H, Lei H, Zhu X, Li X, He
X, Tian C. Arbuscular mycorrhizal fungi-enhanced
resistance against Phytophthora sojae infection on
soybean leaves is međiate by a network involving hydrogen peroxide, jasmonic acid, and the metabolism
of carbon and nitrogen. Acta Physiologiae Plantarum.
2013;35(12): 465–3475.
[71] Mustafa G, Khong NG, Tisserant B, Randoux
B, Fontaine J, Magnin-Robert M, Reignault P,
Sahraoui ALH. Defence mechanisms associated with
mycorrhiza-inđuce resistance in wheat against powdery mildew. Functional Plant Biology. 2017;44(4):
443–454.
[72] Tahat MM, Sijam K. Arbuscular mycorrhizal fungi
and plant root exudates bio-communications in the
rhizospherẹ African Journal of Microbiology Research. 2012;6(46): 7295–7301.
[73] Adamec A, Andrejiová A. Mycorrhiza and Stress Tolerance of Vegetables: A Review. Acta Horticulturae
et Regiotecturae. 2018;21(2): 30–35.
[74] Van Der Heijden MGA, Klironomos JN, Ursic M,
Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken
A, Sanders IR. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and
productivity. Nature. 1998;396: 69–72.
[75] Rillig MC, Mummey DL. Mycorrhizas and soil structurẹ New Phytologist. 2006;171(1): 41–53.
[76] Six J, Bossuyt H, Degryze S, Denef K. A history
of research on the link between (micro) aggregates,
soil biota, and soil organic matter dynamics. Soil and
Tillage Research. 2004;79: 7–31.
[77] Liu X, Luo Y, Cheng L, Hu H, Wang Y, Du Z.
Effect of root and mycelia on fine root decomposition and release of carbon and nitrogen under
Artemisia halođenron in a semi-arid sandy grassland
in China. Frontiers in plant science. 2021;12: 1–12.
doi.org/10.3389/fpls.2021.698054.
[78] Singh PK, Singh M, Tripathi BN. Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma.
2013;250(3): 663–669.
Published
28-March-2022
How to Cite
1.
Hai L, Huynh N, Le L. POTENTIAL BENEFITS OF ARBUSCULAR MYCORRHIZA FUNGI IN SUSTAINABLE AGRICULTURAL CULTIVATION. journal [Internet]. 28Mar.2022 [cited 22Dec.2024];12(46):82-3. Available from: https://journal.tvu.edu.vn/tvujs_old/index.php/journal/article/view/865