NUMERICAL SIMULATION OF AN ELECTROSPINNING PROCESS USING COMSOL MULTIPHYSICS

  • Chinh Van Truong Industrial University of Ho Chi Minh City, Vietnam
  • Tho Van Nguyen Industrial University of Ho Chi Minh City, Vietnam
  • Trieu Khoa Nguyen Industrial University of Ho Chi Minh City, Vietnam
Keywords: COMSOL Multiphysics, electrospinning, e-spun fiber, numerical simulation, ultra-thin fiber

Abstract

Electrospinning is an advanced method to produce ultra-thin plastic fibers for use in tissue culture, non-woven fabrics, batteries, air filtration, water purification, and the like. This paper presents a method using numerical simulation to study the operating parameters of an electrospinning device. The software used is COMSOL Multiphysics. This commercial simulation software solution facilitates finite element analysis using differential equations (PDEs). The current study details the steps of using COMSOL Multiphysics to model an electrospinning device, which has not received enough attention in previous studies. Therefore, this study aims to provide a detailed understanding of the critical parameters governing the electrospinning process simulations, which is a crucial step toward developing an efficient electrospinning device. Moreover, this research endeavor aims to expand the usage of numerical simulations in the field of electrospinning, particularly for beginners.

Downloads

Download data is not yet available.

References

[1] Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma
Z. An Introduction to electrospinning and nanofibers.
Singapore: World Scientific; 2005.
[2] Reneker DH, Yarin AL. Electrospinning jets
and polymer nanofibers, polymer. 2008;49(20):
2387–2425.
[3] Yu M, Dong RH, Yan X, Yu GF, You MH,
Ning X, et al. Recent Advances in needleless
electrospinning of ultrathin fibers: from academia to
industrial production. Macromolecular Materials and
Engineering. 2017;302(7): 1700002.
[4] Lu C, Chen P, Li J, Zhang Y. Computer simulation of electrospinning. Part I. Effect of solvent
in electrospinning. Polymer. 2006;47(3): 915–921.
https://doi.org/10.1016/j.polymer.2005.11.090.
[5] Zhu W, Shi J, Huang Z, Yu P, Yang E.
Electric field simulation of electrospinning with
auxiliary electrode. In: Zhang, J. (ed.) Applied
Informatics and Communication: International Conference, ICAIC 2011. Berlin, Heidelberg: Springer;
2011. p.346–351. https://doi.org/10.1007/978-3-642-
23223-7_44.
[6] Mahjour SB, Sefat F, Polunin Y, Wang L, Wang H.
Improved cell infiltration of electrospun nanofiber
mats for layered tissue constructs. Journal of Biomedical Materials Research Part A. 2016;104(6): 1479–
1488.
[7] Firych-Nowacka A, Smółka K, Wiak S, Glisci ´ nska ´
E, Krucinska I, Chrzanowski M. 3-dimensional com- ´
puter model of electrospinning multicapillary unit
used for electrostatic field analysis. Open Physics.
2017;15(1): 1049–1054.
[8] Smółka K, Firych-Nowacka A, Lefik M. Threedimensional computer models of electrospinning systems. Open Physics. 2017;15(1): 777–789.
[9] Yousefzadeh M. Modeling and simulation of the electrospinning process. In: Afshari M. (ed.) Electrospun
nanofibers. United Kingdom: Woodhead Publishing;
2017. p.277–301. https://doi.org/10.1016/B978-0-08-
100907-9.00012-X.
[10] Su ˇ ster ˇ si ˇ c T, Liverani L, Boccaccini AR, Savi ˇ c S, ´
Janicijevi ´ c A, Filipovi ´ c N. Numerical simulation ´
of electrospinning process in commercial and inhouse software PAK. Materials Research Express.
2018;6(2): 025305. https://doi.org/10.1088/2053-
1591/aaeb08.
[11] Zheng J. Sun B, Wang XX, Cai ZX, Ning
X, Alshehri S, et al. Magnetic-electrospinning
synthesis of γ-Fe2O3 nanoparticle–embedded
flexible nanofibrous films for electromagnetic
shielding. Polymers. 2020;12(3): 695.
https://doi.org/10.3390/polym12030695.
[12] Ge C, Zheng Y, Liu K, Xin B, Li M, All Amin
Newton MD. The formation mechanism of electrospun beaded fibers: Experiment and simulation
study. AATCC Journal of Research. 2022;10(1): 3–
9. https://doi.org/10.1177/24723444221132049.
[13] Guo Y, Wang X, Shen Y, Dong K, Shen L,
Alzalab AAA. Research progress, models and simulation of electrospinning technology: A review.
Journal of Materials Science. 2022;57(1): 58–104.
https://doi.org/10.1007/s10853-021-06575-w.
[14] Gupta A, Ayithapu P, Singhal R. Study of the
electric field distribution of various electrospinning geometries and its effect on the resultant nanofibers using finite element simulation.
Chemical Engineering Science. 2021;235: 116463.
https://doi.org/10.1016/j.ces.2021.116463.
Published
20-July-2023
How to Cite
1.
Truong C, Nguyen T, Nguyen T. NUMERICAL SIMULATION OF AN ELECTROSPINNING PROCESS USING COMSOL MULTIPHYSICS. journal [Internet]. 20Jul.2023 [cited 22Jan.2025];13(6). Available from: https://journal.tvu.edu.vn/tvujs_old/index.php/journal/article/view/2113