APPLYING COLLABORATIVE FILTERING METHOD FOR DOCUMENT RECOMMENDER SYSTEM
Abstract
The recommender system helps recommend relevant information items to the user. In recommender systems, collaborative filtering is commonly used to gauge users' interest in new products. Collaborative filtering systems often rely on data about the similarity of users or products in the system in the past to predict preferences or new products for specific users. In this article, we apply the collaborative filtering technique with the k-nearest neighbor to recommend documents for the English center. The implementation process includes the following steps: Firstly, we build a system to collect and store data in the database; Secondly, we implement a recommendation algorithm with three cases, including Case 1 for new users, Case 2 for users who have seen the most document items, and Case 3 for centers' members. The results make it easier for users to find documents.
Downloads
References
recommender system for an online shopping system
uses collaborative filtering techniques. [Hệ thống gợi
ý sản phẩm trong bán hàng trực tuyến sử dụng kỹ
thuật lọc cộng tác]. Can Tho University Journal of
Science [Tạp chí Khoa học Trường Đại học Cần Thơ].
2014;31: 36–51.
[2] Tran Nguyen Minh Thu, Huynh Quang Nghi. Recommender system for assisting document search. [Hệ
thống gợi ý hỗ trợ tra cứu tài liệu]. Can Tho University
Journal of Science [Tạp chí Khoa học Trường Đại học
Cần Thơ]. 2016;43: 126–134.
[3] Do Thanh Nhan, Tran Nguyen Minh Thu. Recommender system for news aggregation website. [Hệ
thống gợi ý áp dụng cho trang web tổng hợp tin tức
tự động]. Can Tho University Journal of Science [Tạp
chí Khoa học Trường Đại học Cần Thơ]. 2013;Special
issue on Information Technology [Số chuyên đề:
Công nghệ thông tin]: 190–197.
[4] Trieu Vinh Viem, Trieu Yen Yen, Nguyen Thai Nghe.
Building a movie recommender system using factor
in the neighbors approach. [Xây dựng hệ thống gợi
ý phim dựa trên mô hình nhân tố láng giềng]. Can
Tho University Journal of Science [Tạp chí Khoa học
Trường Đại học Cần Thơ]. 2013;Special issue on
Information Technology [Số chuyên đề: Công nghệ
thông tin]: 170–179.
[5] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the stateof-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering. 2005;17(6):
734–749. https://doi.org/10.1109/TKDE.2005.99.
[6] Ekstrand MD, Riedl JT, Konstan JA. Collaborative filtering recommender systems. Foundations and Trends
in Human-Computer Interaction. 2011;4(2): 81173.
DOI: 10.1561/1100000009.
[7] Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry.
Communications of the ACM. 1992;35(12): 61–70.
https://doi.org/10.1145/138859.138867.
[8] Herlocker J, Konstan JA, Riedl J. An empirical
analysis of design choices in neighborhoodbased collaborative filtering algorithms.
Information Retrieval. 2002;5: 287–310.
https://doi.org/10.1023/A:1020443909834.
[9] Ricci F, Rokach L, Shapira B. Introduction to recommender systems handbook. In: Ricci F, Rokach
L, Shapira B, Kantor P. (eds.) Recommender systems handbook. Boston, MA: Springer; 2010. p.1–35.
https://doi.org/10.1007/978-0-387-85820-3_1.