EXOPOLYSACCHARIDES OF LACTIC ACID BACTERIA: THE MANIPULATION OF ENVIRONMENTAL STRESSES TO MODULATE BIOSYNTHESIS FOR INDUSTRIAL APPLICATIONS
Keywords:
environmental stress, exopolysaccharides, lactic acid bacteria
Abstract
Exopolysaccharides are biopolymers produced by microorganisms in response to adverse environmental conditions. Exopolysaccharides of lactic acid bacteria are applied in many different fields such as food, pharmaceuticals, and medicine. This review discusses the biological functions of the exopolysaccharide derived from lactic acid bacteria and their response to exopolysaccharide synthesis under environmental stresses. Environmental stress can alter the expression of eps genes, resulting in changes in yield and monosaccharide composition of obtained exopolysaccharides. Therefore, the evaluation aims to clarify the feasibility of using environmental stress to modify exopolysaccharide biosynthesis in lactic acid bacteria for various applications.-- PDF Article: https://drive.google.com/file/d/1t1yF709I9pb_vSoyNgCBxSn5d22HBF75/view?usp=sharing
Downloads
Download data is not yet available.
References
[1] Broadbent J, McMahon D, Welker D, Oberg C,
Moineau S. Biochemistry, genetics, and applications
of exopolysaccharide production in Streptococcus
thermophilus: A review. Journal of Dairy Science.
2003;86: 407–423.
[2] Baruah R, Das D, Goyal A. Heteropolysaccharides
from lactic acid bacteria: Current trends and applications. Journal of Probiotics and Health. 2016;4: 2.
[3] Nakajima H, Suzuki Y, Hirota T. Cholesterol lowering
activity of ropy fermented milk. Journal of Food
Science. 2006;57: 1327–1329.
[4] Huu Thanh N, Razafindralambo H, Blecker C, N
Yapo C, Thonart P, Delvigne F. Stochastic exposure to
sub-lethal high temperature enhances exopolysaccharides (EPS) excretion and improves Bifidobacterium
bifidum cell survival to freeze-drying. Biochemical
Engineering Journal. 2014;88: 85–94.
[5] Delcour J, Ferain T, Deghorain M, Palumbo E, Hols
P. The biosynthesis and functionality of the cell-wall
of lactic acid bacteria. Antonie van Leeuwenhoek.
1999;76(1): 159–184.
[6] Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou
M, Siezen R, Bron P. The extracellular biology of the
Lactobacilli. FEMS Microbiology Reviews. 2010;34:
199–230.
[7] Lebeer S, Vanderleyden J, De Keersmaecker SCJ.
Genes and molecules of Lactobacilli supporting probiotic action. Microbiology and Molecular Biology
Reviews. 2008;72(4): 728.
[8] Chapot-Chartier M-P, Kulakauskas S. Cell wall structure and function in lactic acid bacteria. Microbial
Cell Factories. 2014;13(1): S9.
[9] Neuhaus F, Baddiley J. A continuum of anionic
charge: structures and functions of d-alanyl-teichoic
acids in gram-positive bacteria. Microbiology and
Molecular Biology Reviews. 2004;67: 686–723.
[10] Nguyễn Thanh Huyền, Lê Thị Mai Anh, Nguyễn Thị
Bích Thùy, Ngô Xuân Nghiễn, Trần Thị Đào, Phạm
Thị Thu Trang và cộng sự. Phân lập, tuyển chọn vi
khuẩn lactic và ứng dụng trong thử nghiệm chế biến
tạo sản phẩm nấm sò lên men. Tạp chí Khoa học
Nông nghiệp Việt Nam. 2021;19(3): 379–388.
[11] Xu X, Peng Q, Zhang Y, Tian D, Zhang P, Huang
Y et al. A novel exopolysaccharide produced by
Lactobacillus coryniformis NA-3 exhibits antioxidant
and biofilm-inhibiting properties in vitro. Food &
Nutrition Research. 2020;64: 1–13.
[12] Badel-Berchoux S, Bernardi T, Michaud P. New perspective for Lactobacilli exopolysaccharides. Biotechnology Advances. 2011;29: 54–66.
[13] Torino M, Font de Valdez G, Mozzi F. Biopolymers
from lactic acid bacteria. Novel applications in foods
and beverages. Frontiers in Microbiology. 2015;6:
834.
[14] Caggianiello G, Kleerebezem M, Spano G. Exopolysaccharides produced by lactic acid bacteria:
from health-promoting benefits to stress tolerance
mechanisms. Applied Microbiology and Biotechnology. 2016;100(9): 3877–3886.
[15] Lee IC, Caggianiello G, Swam I, Taverne N, Meijerink M, Bron P, Spano G, Kleerebezem M. Strainspecific features of extracellular polysaccharides and
their impact on host interactions of Lactobacillus
plantarum. Applied and Environmental Microbiology.
2016;82: 00306–00316.
[16] Zhou Y, Cui Y, Qu X. Exopolysaccharides of lactic
acid bacteria: Structure, bioactivity and associations:
A review. Carbohydrate Polymers. 2019;207: 317–
332.
[17] [17] Kitazawa H, Harata T, Uemura J, Saito T,
Kaneko T, Itoh T. Phosphate group requirement for
mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus
delbrueckii ssp. bulgaricus. International Journal of
Food Microbiology. 1998;40(3): 169–175.
[18] Elova NA, Kutliyeva GD, Zakiryaeva SI. Characterization of exopolysaccharide from Lactobacillus casei
K7/3. European Journal of Molecular & Clinical
Medicine. 2020;7(7): 506–515.
[19] Trabelsi I, Ktari N, Slima S, Triki M, Bardaa S,
Mnif H, ben salah R. Evaluation of dermal wound
healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp.Ca 6. International Journal of
Biological Macromolecules. 2017;103: 194–201.
[20] Jeong D, Kim D-H, Kang I-B, Kim H, Song K-Y,
Kim H-S, Seo K-H. Characterization and antibacterial activity of a novel exopolysaccharide produced
by Lactobacillus kefiranofaciens DN1 isolated from
kefir. Food Control. 2017;78: 436–442.
[21] Kock K.H., S. Wilhelms, I. Everson, J. Groger. Varia- ¨
tions in the diet composition and feeding intensity of
mackerel icefish Champsocephalus gunnari at South
Georgia (Antarctica). Marine Ecology Progress Series. 1994;(108): 43–57.
[22] Alp Avci G. Probable Novel Probiotics: Eps production, cholesterol removal and glycocholate deconjugation of Lactobacillus plantarum Ga06 and
Ga11 isolated from local handmade- cheese. Journal
of Microbiology, Biotechnology and Food Sciences.
2020;10(1): 83–86.
[23] Ishimwe N, Daliri E, Lee B, Fang F, Du G. The
perspective on cholesterol lowering mechanisms of
probiotics. Molecular Nutrition & Food Research.
2015;59(1): 94–105.
[24] Michael D, Davies T, Moss J, Calvente D, Ramji
D, Jr M, Pechlivanis A, Plummer S, Hughes T.
The anti-cholesterolaemic effect of a consortium
of probiotics: An acute study in C57BL/6J mice.
Scientific Reports. 2017;7(1): 2883. Truy cập từ:
https://doi.org/10.1038/s41598-017-02889-5.
[25] Rani RP, Anandharaj M, David Ravindran A. Characterization of a novel exopolysaccharide produced by
Lactobacillus gasseri FR4 and demonstration of its
in vitro biological properties. International Journal
of Biological Macromolecules. 2018;109: 772–783.
[26] Adesulu-Dahunsi AT, Jeyaram K, Sanni AI, Banwo
K. Production of exopolysaccharide by strains of
Lactobacillus plantarum YO175 and OF101 isolated
from traditional fermented cereal beverage. PeerJ.
2018;6: e5326–e5326.
[27] Li B, Du P, Smith EE, Wang S, Jiao Y, Guo L, Huo
G, Liu F. In vitro and in vivo evaluation of an exopolysaccharide produced by Lactobacillus helveticus
KLDS1.8701 for the alleviative effect on oxidative
stress. Food & Function. 2019;10(3): 1707–1717.
[28] Nácher-Vázquez M, Ballesteros N, Canales Á, Rodríguez Saint-Jean S, Pérez-Prieto SI, Prieto A, Aznar
R, López P. Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity
against salmonid viruses. Carbohydrate Polymers.
2015;124: 292–301.
[29] [28] Ren W, Xia Y, Wang G, Zhang H, Zhu S, Ai L.
Bioactive exopolysaccharides from a S. thermophilus
strain: screening, purification and characterization.
International Journal of Biological Macromolecules.
2016;86: 402–407.
[30] Guo Y, Pan D, Li H, Sun Y, Zeng X, Yan B.
Immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. Lactis.
Food Chemistry. 2013;138: 84–89.
[31] Wang K, Li W, Rui X, Chen X, Jiang M, Dong
M. Characterization of a novel exopolysaccharide
with antitumor activity from Lactobacillus plantarum
70810. International Journal of Biological Macromolecules. 2014;63: 133–139.
[32] Wang J, Zhao X, Yang Y, Zhao A, Yang Z. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32.
International Journal of Biological Macromolecules.
2015;74: 119–126.
[33] Wu J, Zhang Y, Ye L, Wang C. The anticancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: A review. Carbohydrate Polymers. 2021; 253. Truy cập từ:
https://doi.org/10.1016/j.carbpol.2020.117308.
[34] Das D, Baruah R, Goyal A. A food additive with
prebiotic properties of an alpha-D-glucan from Lactobacillus plantarum DM5. International Journal of
Biological Macromolecules. 2014;69: 20–26.
[35] Hongpattarakere T, Cherntong N, Wichienchot S,
Kolida S, Rastall RA. In vitro prebiotic evaluation of
exopolysaccharides produced by marine isolated lactic
acid bacteria. Carbohydrate Polymers. 2012;87(1):
846–852.
[36] Balzaretti S, Taverniti V, Guglielmetti S, Fiore
W, Minuzzo M, Ngo H, Ngere J, Sadiq S,
Humphreys P, Laws A. A novel rhamnose-rich heteroexopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells.
Applied and Environmental Microbiology. 2016;83:
02702–02716.
[37] Bengoa A, Llamas-Arriba M, Iraporda C, Duenas M, ˜
Abraham A, Garrote G. Impact of growth temperature
on exopolysaccharide production and probiotic properties of Lactobacillus paracasei strains isolated from
kefir grains. Food Microbiology. 2017;69: 212–218.
[38] Kim K, Lee G, Thanh HD, Kim J-H, Konkit M, Yoon
S, Park M, Yang S, Park E, Kim W. Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and
regulates inflammatory response. Journal of Dairy
Science. 2018;101(7): 5702–5712.
[39] Liu J, Thorp S. Cell surface heparan sulfate and its
roles in assisting viral infections. Medicinal Research
Reviews. 2002;22: 1–25.
[40] Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama
H. Biofilm formation by lactic acid bacteria and resistance to environmental stress. Journal of Bioscience
and Bioengineering. 2008;106(4): 381–386.
[41] Nguyen P-T, Nguyen T-T, Vo T-N-T, Nguyen T-T-X,
Hoang Q-K, Nguyen H-T. Response of Lactobacillus
plantarum VAL6 to challenges of pH and sodium
chloride stresses. Scientific Reports. 2021;11(1): 1–
9.
[42] Tho NP, Son LT, Tho NT, Cuong BD, Toan HP,
Khanh HQ, Thanh NH. Enhancing the production and
monosaccharide composition of exopolysaccharides
of Lactobacillus plantarum VAL6 by applying thermal
stress and increased carbon dioxide concentration.
Microbiology. 2021;90(4): 527–537.
[43] Nandal K, Sehrawat AR, Yadav AS, Vashishat RK,
Boora KS. High temperature-induced changes in
exopolysaccharides, lipopolysaccharides and protein
profile of heat-resistant mutants of Rhizobium sp.
(Cajanus). Microbiology Research. 2005;160(4): 367–
373.
[44] Petry S, Furlan S, Crepeau MJ, Cerning J, Desmazeaud M. Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii
subsp. bulgaricus grown in a chemically defined
medium. Applied and Environmental Microbiology.
2000;66(8): 3427–3431.
[45] Sanlibaba P, C¸ akmak G. Exopolysaccharides production by lactic acid bacteria. Applied Microbiology.
2016;2(2). Truy cập từ: https://doi: 10.4172/2471-
9315.1000115.
[46] Kumar AS, Mody K, Jha B. Bacterial
exopolysaccharides-a perception. Journal of Basic
Microbiology. 2007;47(2): 103–117.
[47] Liu Z, Zhang Z, Qiu L, Zhang F, Xu X, Wei H,
Tao X. Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04. Journal of Dairy Science.
2017;100(9): 6895–6905.
[48] Mills S, Stanton C, Fitzgerald GF, Ross R. Enhancing the stress responses of probiotics for a lifestyle
from gut to product and back again. Microbial Cell
Factories. 2011;10(1): S19.
[49] Vu THN, Quach NT, Nguyen NA, Nguyen HT,
Ngo CC, Nguyen TD, Ho P-H, Hoang H,
Chu HH, Phi Q-T. Genome mining associated
with analysis of structure, antioxidant activity reveals the potential production of levan-rich exopolysaccharides by food-derived Bacillus velezensis
VTX20. Applied Sciences. 2021;11(15). Truy cập từ
https://doi.org/10.3390/app11157055
[50] Zeidan A, Kuzina V, Janzen T, Buldo P, Derkx P,
Oregaard G, Neves A. Polysaccharide production by
lactic acid bacteria: from genes to industrial applications. FEMS Microbiology Reviews. 2017;41: S168–
S200.
[51] Le T-S, Nguyen P-T, Nguyen-Ho S-H, Nguyen T-P,
Nguyen T-T, Thai M-N, Nguyen-Thi T-U, Nguyen MC, Hoang Q-K, Nguyen H-T. Expression of genes
involved in exopolysaccharide synthesis in Lactiplantibacillus plantarum VAL6 under environmental stresses. Archives of Microbiology. 2021;203(8):
4941–4950.
[52] Li Y, Zhou Y, Ma Y, Li X. Design and synthesis
of novel cell wall inhibitors of Mycobacterium tuberculosis GlmM and GlmU. Carbohydrate Research.
2011;346(13): 1714–1720.
[53] Guchte M, Serror P, Chervaux C, Smokvina T,
Ehrlich S, Maguin E. Stress response in lactic acid
bacteria. Antonie van Leeuwenhoek. 2002;82: 187–
216.
[54] Dertli E, Mayer M, Narbad A. Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785.
BMC Microbiology. 2015;15(1): 1–9.
[55] Fedorová M, Nemcová R, Mudronová D, Styková ˇ
E, Brudnáková M, Reiffová K. Exopolysaccharides ˇ
may increase gastrointestinal stress tolerance of Lactobacillus reuteri. Folia Veterinaria. 2018;62(4): 24–
32.
[56] Boke H, Aslim B, Alp Avci G. The role of resistance
to bile salts and acid tolerance of exopolysaccharides
(EPSS) produced by yogurt starter bacteria. Archives
of Biological Sciences. 2010;62(2): 323–328.
[57] Nguyen HT, Razafindralambo H, Blecker C, N’Yapo
C, Thonart P, Delvigne F. Stochastic exposure to
sub-lethal high temperature enhances exopolysaccharides (EPS) excretion and improves Bifidobacterium
bifidum cell survival to freeze–drying. Biochemical
Engineering Journal. 2014;88: 85–94.
[58] Teixeira P, Castro H, Kirby R. Evidence of membrane
lipid oxidation of spray-dried Lactobacillus bulgaricus during storage. Letters in Applied Microbiology.
1996;22(1): 34–38.
[59] Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A. Adhesion mechanisms mediated by probiotics and prebiotics and their
potential impact on human health. Applied Microbiology and Biotechnology. 2019;103(16): 6463–6472.
[60] Carvalho FM, Teixeira-Santos R, Mergulhao FJM,
Gomes LC. Effect of Lactobacillus plantarum
biofilms on the adhesion of Escherichia coli to urinary tract devices. Antibiotics. 2021;10(8). Truy cập
từ: https://doi.org/10.3390/antibiotics10080966.
[61] Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm
Matrixome: Extracellular components in structured
microbial communities. Trends in Microbiology.
2020;28(8): 668–681.
[62] Xu Y, Cui Y, Yue F, Liu L, Shan Y, Liu B, Zhou
Y, Lu X. Exopolysaccharides produced by lactic acid ¨
bacteria and Bifidobacteria: Structures, physiochemical functions and applications in the food industry.
Food Hydrocolloids. 2019;94: 475–499.
[63] Wang Q, Wang F, Xu Z, Ding Z. Bioactive
mushroom polysaccharides: A review on
monosaccharide composition, biosynthesis and
regulation. Molecules. 2017;22(6). Truy cập từ:
https://doi.org/10.3390/molecules22060955.
[64] Chen YC, Wu YJ, Hu CY. Monosaccharide composition influence and immunomodulatory effects of
probiotic exopolysaccharides. International Journal
of Biological Macromolecules. 2019;133: 575–582.
Moineau S. Biochemistry, genetics, and applications
of exopolysaccharide production in Streptococcus
thermophilus: A review. Journal of Dairy Science.
2003;86: 407–423.
[2] Baruah R, Das D, Goyal A. Heteropolysaccharides
from lactic acid bacteria: Current trends and applications. Journal of Probiotics and Health. 2016;4: 2.
[3] Nakajima H, Suzuki Y, Hirota T. Cholesterol lowering
activity of ropy fermented milk. Journal of Food
Science. 2006;57: 1327–1329.
[4] Huu Thanh N, Razafindralambo H, Blecker C, N
Yapo C, Thonart P, Delvigne F. Stochastic exposure to
sub-lethal high temperature enhances exopolysaccharides (EPS) excretion and improves Bifidobacterium
bifidum cell survival to freeze-drying. Biochemical
Engineering Journal. 2014;88: 85–94.
[5] Delcour J, Ferain T, Deghorain M, Palumbo E, Hols
P. The biosynthesis and functionality of the cell-wall
of lactic acid bacteria. Antonie van Leeuwenhoek.
1999;76(1): 159–184.
[6] Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou
M, Siezen R, Bron P. The extracellular biology of the
Lactobacilli. FEMS Microbiology Reviews. 2010;34:
199–230.
[7] Lebeer S, Vanderleyden J, De Keersmaecker SCJ.
Genes and molecules of Lactobacilli supporting probiotic action. Microbiology and Molecular Biology
Reviews. 2008;72(4): 728.
[8] Chapot-Chartier M-P, Kulakauskas S. Cell wall structure and function in lactic acid bacteria. Microbial
Cell Factories. 2014;13(1): S9.
[9] Neuhaus F, Baddiley J. A continuum of anionic
charge: structures and functions of d-alanyl-teichoic
acids in gram-positive bacteria. Microbiology and
Molecular Biology Reviews. 2004;67: 686–723.
[10] Nguyễn Thanh Huyền, Lê Thị Mai Anh, Nguyễn Thị
Bích Thùy, Ngô Xuân Nghiễn, Trần Thị Đào, Phạm
Thị Thu Trang và cộng sự. Phân lập, tuyển chọn vi
khuẩn lactic và ứng dụng trong thử nghiệm chế biến
tạo sản phẩm nấm sò lên men. Tạp chí Khoa học
Nông nghiệp Việt Nam. 2021;19(3): 379–388.
[11] Xu X, Peng Q, Zhang Y, Tian D, Zhang P, Huang
Y et al. A novel exopolysaccharide produced by
Lactobacillus coryniformis NA-3 exhibits antioxidant
and biofilm-inhibiting properties in vitro. Food &
Nutrition Research. 2020;64: 1–13.
[12] Badel-Berchoux S, Bernardi T, Michaud P. New perspective for Lactobacilli exopolysaccharides. Biotechnology Advances. 2011;29: 54–66.
[13] Torino M, Font de Valdez G, Mozzi F. Biopolymers
from lactic acid bacteria. Novel applications in foods
and beverages. Frontiers in Microbiology. 2015;6:
834.
[14] Caggianiello G, Kleerebezem M, Spano G. Exopolysaccharides produced by lactic acid bacteria:
from health-promoting benefits to stress tolerance
mechanisms. Applied Microbiology and Biotechnology. 2016;100(9): 3877–3886.
[15] Lee IC, Caggianiello G, Swam I, Taverne N, Meijerink M, Bron P, Spano G, Kleerebezem M. Strainspecific features of extracellular polysaccharides and
their impact on host interactions of Lactobacillus
plantarum. Applied and Environmental Microbiology.
2016;82: 00306–00316.
[16] Zhou Y, Cui Y, Qu X. Exopolysaccharides of lactic
acid bacteria: Structure, bioactivity and associations:
A review. Carbohydrate Polymers. 2019;207: 317–
332.
[17] [17] Kitazawa H, Harata T, Uemura J, Saito T,
Kaneko T, Itoh T. Phosphate group requirement for
mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus
delbrueckii ssp. bulgaricus. International Journal of
Food Microbiology. 1998;40(3): 169–175.
[18] Elova NA, Kutliyeva GD, Zakiryaeva SI. Characterization of exopolysaccharide from Lactobacillus casei
K7/3. European Journal of Molecular & Clinical
Medicine. 2020;7(7): 506–515.
[19] Trabelsi I, Ktari N, Slima S, Triki M, Bardaa S,
Mnif H, ben salah R. Evaluation of dermal wound
healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp.Ca 6. International Journal of
Biological Macromolecules. 2017;103: 194–201.
[20] Jeong D, Kim D-H, Kang I-B, Kim H, Song K-Y,
Kim H-S, Seo K-H. Characterization and antibacterial activity of a novel exopolysaccharide produced
by Lactobacillus kefiranofaciens DN1 isolated from
kefir. Food Control. 2017;78: 436–442.
[21] Kock K.H., S. Wilhelms, I. Everson, J. Groger. Varia- ¨
tions in the diet composition and feeding intensity of
mackerel icefish Champsocephalus gunnari at South
Georgia (Antarctica). Marine Ecology Progress Series. 1994;(108): 43–57.
[22] Alp Avci G. Probable Novel Probiotics: Eps production, cholesterol removal and glycocholate deconjugation of Lactobacillus plantarum Ga06 and
Ga11 isolated from local handmade- cheese. Journal
of Microbiology, Biotechnology and Food Sciences.
2020;10(1): 83–86.
[23] Ishimwe N, Daliri E, Lee B, Fang F, Du G. The
perspective on cholesterol lowering mechanisms of
probiotics. Molecular Nutrition & Food Research.
2015;59(1): 94–105.
[24] Michael D, Davies T, Moss J, Calvente D, Ramji
D, Jr M, Pechlivanis A, Plummer S, Hughes T.
The anti-cholesterolaemic effect of a consortium
of probiotics: An acute study in C57BL/6J mice.
Scientific Reports. 2017;7(1): 2883. Truy cập từ:
https://doi.org/10.1038/s41598-017-02889-5.
[25] Rani RP, Anandharaj M, David Ravindran A. Characterization of a novel exopolysaccharide produced by
Lactobacillus gasseri FR4 and demonstration of its
in vitro biological properties. International Journal
of Biological Macromolecules. 2018;109: 772–783.
[26] Adesulu-Dahunsi AT, Jeyaram K, Sanni AI, Banwo
K. Production of exopolysaccharide by strains of
Lactobacillus plantarum YO175 and OF101 isolated
from traditional fermented cereal beverage. PeerJ.
2018;6: e5326–e5326.
[27] Li B, Du P, Smith EE, Wang S, Jiao Y, Guo L, Huo
G, Liu F. In vitro and in vivo evaluation of an exopolysaccharide produced by Lactobacillus helveticus
KLDS1.8701 for the alleviative effect on oxidative
stress. Food & Function. 2019;10(3): 1707–1717.
[28] Nácher-Vázquez M, Ballesteros N, Canales Á, Rodríguez Saint-Jean S, Pérez-Prieto SI, Prieto A, Aznar
R, López P. Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity
against salmonid viruses. Carbohydrate Polymers.
2015;124: 292–301.
[29] [28] Ren W, Xia Y, Wang G, Zhang H, Zhu S, Ai L.
Bioactive exopolysaccharides from a S. thermophilus
strain: screening, purification and characterization.
International Journal of Biological Macromolecules.
2016;86: 402–407.
[30] Guo Y, Pan D, Li H, Sun Y, Zeng X, Yan B.
Immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. Lactis.
Food Chemistry. 2013;138: 84–89.
[31] Wang K, Li W, Rui X, Chen X, Jiang M, Dong
M. Characterization of a novel exopolysaccharide
with antitumor activity from Lactobacillus plantarum
70810. International Journal of Biological Macromolecules. 2014;63: 133–139.
[32] Wang J, Zhao X, Yang Y, Zhao A, Yang Z. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32.
International Journal of Biological Macromolecules.
2015;74: 119–126.
[33] Wu J, Zhang Y, Ye L, Wang C. The anticancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: A review. Carbohydrate Polymers. 2021; 253. Truy cập từ:
https://doi.org/10.1016/j.carbpol.2020.117308.
[34] Das D, Baruah R, Goyal A. A food additive with
prebiotic properties of an alpha-D-glucan from Lactobacillus plantarum DM5. International Journal of
Biological Macromolecules. 2014;69: 20–26.
[35] Hongpattarakere T, Cherntong N, Wichienchot S,
Kolida S, Rastall RA. In vitro prebiotic evaluation of
exopolysaccharides produced by marine isolated lactic
acid bacteria. Carbohydrate Polymers. 2012;87(1):
846–852.
[36] Balzaretti S, Taverniti V, Guglielmetti S, Fiore
W, Minuzzo M, Ngo H, Ngere J, Sadiq S,
Humphreys P, Laws A. A novel rhamnose-rich heteroexopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells.
Applied and Environmental Microbiology. 2016;83:
02702–02716.
[37] Bengoa A, Llamas-Arriba M, Iraporda C, Duenas M, ˜
Abraham A, Garrote G. Impact of growth temperature
on exopolysaccharide production and probiotic properties of Lactobacillus paracasei strains isolated from
kefir grains. Food Microbiology. 2017;69: 212–218.
[38] Kim K, Lee G, Thanh HD, Kim J-H, Konkit M, Yoon
S, Park M, Yang S, Park E, Kim W. Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and
regulates inflammatory response. Journal of Dairy
Science. 2018;101(7): 5702–5712.
[39] Liu J, Thorp S. Cell surface heparan sulfate and its
roles in assisting viral infections. Medicinal Research
Reviews. 2002;22: 1–25.
[40] Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama
H. Biofilm formation by lactic acid bacteria and resistance to environmental stress. Journal of Bioscience
and Bioengineering. 2008;106(4): 381–386.
[41] Nguyen P-T, Nguyen T-T, Vo T-N-T, Nguyen T-T-X,
Hoang Q-K, Nguyen H-T. Response of Lactobacillus
plantarum VAL6 to challenges of pH and sodium
chloride stresses. Scientific Reports. 2021;11(1): 1–
9.
[42] Tho NP, Son LT, Tho NT, Cuong BD, Toan HP,
Khanh HQ, Thanh NH. Enhancing the production and
monosaccharide composition of exopolysaccharides
of Lactobacillus plantarum VAL6 by applying thermal
stress and increased carbon dioxide concentration.
Microbiology. 2021;90(4): 527–537.
[43] Nandal K, Sehrawat AR, Yadav AS, Vashishat RK,
Boora KS. High temperature-induced changes in
exopolysaccharides, lipopolysaccharides and protein
profile of heat-resistant mutants of Rhizobium sp.
(Cajanus). Microbiology Research. 2005;160(4): 367–
373.
[44] Petry S, Furlan S, Crepeau MJ, Cerning J, Desmazeaud M. Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii
subsp. bulgaricus grown in a chemically defined
medium. Applied and Environmental Microbiology.
2000;66(8): 3427–3431.
[45] Sanlibaba P, C¸ akmak G. Exopolysaccharides production by lactic acid bacteria. Applied Microbiology.
2016;2(2). Truy cập từ: https://doi: 10.4172/2471-
9315.1000115.
[46] Kumar AS, Mody K, Jha B. Bacterial
exopolysaccharides-a perception. Journal of Basic
Microbiology. 2007;47(2): 103–117.
[47] Liu Z, Zhang Z, Qiu L, Zhang F, Xu X, Wei H,
Tao X. Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04. Journal of Dairy Science.
2017;100(9): 6895–6905.
[48] Mills S, Stanton C, Fitzgerald GF, Ross R. Enhancing the stress responses of probiotics for a lifestyle
from gut to product and back again. Microbial Cell
Factories. 2011;10(1): S19.
[49] Vu THN, Quach NT, Nguyen NA, Nguyen HT,
Ngo CC, Nguyen TD, Ho P-H, Hoang H,
Chu HH, Phi Q-T. Genome mining associated
with analysis of structure, antioxidant activity reveals the potential production of levan-rich exopolysaccharides by food-derived Bacillus velezensis
VTX20. Applied Sciences. 2021;11(15). Truy cập từ
https://doi.org/10.3390/app11157055
[50] Zeidan A, Kuzina V, Janzen T, Buldo P, Derkx P,
Oregaard G, Neves A. Polysaccharide production by
lactic acid bacteria: from genes to industrial applications. FEMS Microbiology Reviews. 2017;41: S168–
S200.
[51] Le T-S, Nguyen P-T, Nguyen-Ho S-H, Nguyen T-P,
Nguyen T-T, Thai M-N, Nguyen-Thi T-U, Nguyen MC, Hoang Q-K, Nguyen H-T. Expression of genes
involved in exopolysaccharide synthesis in Lactiplantibacillus plantarum VAL6 under environmental stresses. Archives of Microbiology. 2021;203(8):
4941–4950.
[52] Li Y, Zhou Y, Ma Y, Li X. Design and synthesis
of novel cell wall inhibitors of Mycobacterium tuberculosis GlmM and GlmU. Carbohydrate Research.
2011;346(13): 1714–1720.
[53] Guchte M, Serror P, Chervaux C, Smokvina T,
Ehrlich S, Maguin E. Stress response in lactic acid
bacteria. Antonie van Leeuwenhoek. 2002;82: 187–
216.
[54] Dertli E, Mayer M, Narbad A. Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785.
BMC Microbiology. 2015;15(1): 1–9.
[55] Fedorová M, Nemcová R, Mudronová D, Styková ˇ
E, Brudnáková M, Reiffová K. Exopolysaccharides ˇ
may increase gastrointestinal stress tolerance of Lactobacillus reuteri. Folia Veterinaria. 2018;62(4): 24–
32.
[56] Boke H, Aslim B, Alp Avci G. The role of resistance
to bile salts and acid tolerance of exopolysaccharides
(EPSS) produced by yogurt starter bacteria. Archives
of Biological Sciences. 2010;62(2): 323–328.
[57] Nguyen HT, Razafindralambo H, Blecker C, N’Yapo
C, Thonart P, Delvigne F. Stochastic exposure to
sub-lethal high temperature enhances exopolysaccharides (EPS) excretion and improves Bifidobacterium
bifidum cell survival to freeze–drying. Biochemical
Engineering Journal. 2014;88: 85–94.
[58] Teixeira P, Castro H, Kirby R. Evidence of membrane
lipid oxidation of spray-dried Lactobacillus bulgaricus during storage. Letters in Applied Microbiology.
1996;22(1): 34–38.
[59] Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A. Adhesion mechanisms mediated by probiotics and prebiotics and their
potential impact on human health. Applied Microbiology and Biotechnology. 2019;103(16): 6463–6472.
[60] Carvalho FM, Teixeira-Santos R, Mergulhao FJM,
Gomes LC. Effect of Lactobacillus plantarum
biofilms on the adhesion of Escherichia coli to urinary tract devices. Antibiotics. 2021;10(8). Truy cập
từ: https://doi.org/10.3390/antibiotics10080966.
[61] Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm
Matrixome: Extracellular components in structured
microbial communities. Trends in Microbiology.
2020;28(8): 668–681.
[62] Xu Y, Cui Y, Yue F, Liu L, Shan Y, Liu B, Zhou
Y, Lu X. Exopolysaccharides produced by lactic acid ¨
bacteria and Bifidobacteria: Structures, physiochemical functions and applications in the food industry.
Food Hydrocolloids. 2019;94: 475–499.
[63] Wang Q, Wang F, Xu Z, Ding Z. Bioactive
mushroom polysaccharides: A review on
monosaccharide composition, biosynthesis and
regulation. Molecules. 2017;22(6). Truy cập từ:
https://doi.org/10.3390/molecules22060955.
[64] Chen YC, Wu YJ, Hu CY. Monosaccharide composition influence and immunomodulatory effects of
probiotic exopolysaccharides. International Journal
of Biological Macromolecules. 2019;133: 575–582.
Published
24-March-2023
How to Cite
1.
Nguyen T, Nguyen T. EXOPOLYSACCHARIDES OF LACTIC ACID BACTERIA: THE MANIPULATION OF ENVIRONMENTAL STRESSES TO MODULATE BIOSYNTHESIS FOR INDUSTRIAL APPLICATIONS. journal [Internet]. 24Mar.2023 [cited 22Jan.2025];13(1):33-2. Available from: https://journal.tvu.edu.vn/tvujs_old/index.php/journal/article/view/1685
Section
Articles