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INVESTIGATION OF A MODEL FOR CONTROLLING DISSOLVED
OXYGEN CONCENTRATION IN CRAB PONDS

Ho Ngoc Ha!*, Minh Hoa Nguyen?, Duong Van Cham?®

Abstract — Nowadays, aquaculture, especially
crab farming, is given special attention to devel-
opment. However, the control of dissolved oxygen
concentration in crab ponds has not been widely
studied. Therefore, the purpose of the project is
to study a model to control the dissolved oxygen
concentration in water in a ratio appropriate
to the weather and climate conditions in Tra
Vinh Province, Vietnam. The study uses data
collection and processing of actual data from the
crab farming environment in the pond to find the
most suitable control model, thereby adjusting
the dissolved oxygen concentration to suit the
atmospheric conditions of the local post. Data is
collected through sensors installed directly on the
pond. Then it is processed with Matlab Simulink
software to check the effectiveness of the models.
The results of this study show that the artificial
neural network model is the most suitable model
for applying dissolved oxygen concentration con-
trol. Research results can be used to improve
dissolved oxygen concentration adjustment de-
vices, increasing the productivity, quality, and
production efficiency of the aquaculture industry.

Keywords: artificial neural network, crap
ponds, dissolved oxygen.

I. INTRODUCTION

Dissolved oxygen (DO) concentration, an im-
portant factor for the health and productivity
of aquatic organisms, has not received adequate
attention in Vietnam, especially in crab farm-
ing systems. Effective DO control is essential

12Tra Vinh University, Vietnam

3Duyen Hai Thermal Power Company, Vietnam

*Corresponding author: hnha@tvu.edu.vn

Received date: 03’ July 2024; Revised date: 067
November 2024; Accepted date: 08" November 2024

55

to maintain optimal water quality and ensure
sustainable aquaculture practices.

The research highlighted that pond farming in-
volves open water areas where the distribution of
dissolved oxygen is inherently three-dimensional.
Traditional one-dimensional predictions at a sin-
gle monitoring point fail to capture the actual
spatial variation of dissolved oxygen within the
pond. Initially, environmental factors influencing
dissolved oxygen distribution were collected, and
an attention-gated recurrent unit (GRU) model
was developed to predict dissolved oxygen at a
central monitoring point. Subsequently, a three-
dimensional coordinate system was established
centered on these monitoring points, employ-
ing the optimized gradient boost regression tree
(GBRT) and random search (RS) algorithms to
predict dissolved oxygen levels at any location
within the pond. Experimental results demon-
strated that the Attention-GRU-GBRT method
could accurately predict dissolved oxygen in the
three-dimensional spaces of ponds [1].

Xinhui et al. [2] utilized a round-robin experi-
ment to explore the aeration gap of DO at varying
air flow rates. The study identified gas flow rate
and DO content as the main variables. In this
work, a radius basis function (RBF) neural net-
work proportional-integral-derivative (PID) con-
troller, optimized by a differential evolution (DE)
algorithm (DE-RBF-PID), is proposed. This con-
troller includes two significant optimizations:
firstly, the improved DE algorithm determines
the optimal initial PID parameters; secondly, the
RBF neural network’s learning ability allows for
online adjustment of these parameters, effectively
eliminating overshoot and improving adaptability.
Simulations on a typical nonlinear DO control
system confirm the superiority of the DE-RBF-
PID controller over traditional PID and RBF-
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PID controllers, making it a promising solution
for precise tracking control of DO in complex
aquaculture environments.

This study outlines the research methodology,
emphasizing data collection via smart sensor de-
vices directly installed in the pond environment.
Subsequently, advanced algorithmic models, in-
cluding the artificial neural network (ANN) and
the ARMAX linear regression model, are imple-
mented using Matlab/Simulink for data analysis
and interpretation. From there, the results of the
models were analyzed and compared to find the
most suitable control model to adjust dissolved
oxygen concentration in accordance with local
climatic conditions.

II. LITERATURE REVIEW
A. Dynamic model design

Aquatic macrophytes are commonly cultivated
by farmers to sustain DO levels in crab ponds,
serving as the primary source of photosynthetic
oxygen. This study also incorporates the influ-
ence of phytoplankton and protists on DO within
the scope of aquatic macrophytes. An air diffu-
sion aeration system was selected as the focus of
the research due to its superior oxygen transfer
capabilities. Crab ponds are considered a closed
ecosystem with no water exchange with the ex-
ternal environment. For modeling purposes, the
biomass of aquatic macrophytes was quantified
in terms of dry weight (gm~3), while the organic
matter content was expressed as mmolm™3. The
structural framework of the DO dynamic model,
accounting for both physical and biochemical
factors affecting oxygen flux, is illustrated in
Figure 1.

The dynamics and equilibrium of DO are gov-
erned by the conditions of oxygen sources and
sinks. To characterize the temporal behavior of
DO, all relevant sources and sinks were incor-
porated to formulate a conservation equation, as
presented in Equation (1).

d:%o = P + Rear + Aer + Rmac — Min — Rcrab (1)
Where: Rear: water surface reaeration; Aer: oxy-

gen transfer rate of mechanical aeration; P: the
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Fig. 1: The structure of a DO model
in a crab pond

source terms including photosynthesis of aquatic
macrophyte; R,,,.: The sink terms of DO contain
respiration by aquatic macrophyte; R.,.,: respi-
ration by crabs; Min: mineralization of organic
matter.

B. Mathematical procedures and formulas

Photosynthesis of aquatic macrophyte

Photosynthesis is a process where chlorophyll
captures light energy and transforms carbon diox-
ide and water into energy-rich organic com-
pounds, releasing oxygen in the process. Thus,
the photosynthetic rate is generally considered
proportional to the biomass of aquatic macro-
phytes. The primary production of these plants
is influenced by three key external factors: solar
radiation, temperature, and nutrient availability
[3]. Mandal et al. [4] take photoinhibition into
account, and the formula for oxygen production
by aquatic plants through photosynthesis is pre-
sented in Equation (2).

P

= Paxx () e(l_(ﬁ)) xg

lopt

Where: P, daily maximum oxygen pro-
duction rate influenced by water temperature;
I,ps: optimum solar radiation for macrophyte; B:
macrophyte biomass; I: the water surface light
intensity.

Plus et al. [5] stated that the maximum oxygen
production rate (P,.) is influenced by water
temperature (T). To estimate Pmax for ten aquatic
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plant species, both linear and exponential re-
gression models were applied. In this research,
exponential regression was used to illustrate the
relationship between Pmax and T, with the rele-
vant calculation provided in Equation (3).

— bT
Phax = axe

(3)

Where: b: temperature coefficient; a: regres-
sion coefficient.

Their exact value will be obtained by parame-
ter optimization.

Respiration of aquatic macrophytes

Respiration is a vital metabolic process where
organic matter breaks down into carbon dioxide
and water, releasing energy necessary for plant
growth. Ondok et al. [6] noted that the respi-
ration of aquatic macrophytes is influenced by
temperature, with respiration rates increasing as
water temperature rises. Exponential regression
was applied in this study to model the changes in
respiration rates based on temperature. Equations
(4) and (5) describe the respiration process of
aquatic plants.

4)
(5)

R=respxB

Resp = mx e"T

Where: m: regression coefficient; resp: limita-
tion function of water temperature; n: tempera-
ture coefficient

Surface regeneration

Haider et al. [7] explained that the reaction
involves a diffusion process between DO in the
water and atmospheric oxygen. The oxygen ex-
change at the water surface is controlled by
the gradient between the DO concentration and
the oxygen saturation level in the water. The
formula for calculating water surface regeneration
is presented in Equation (6).

Rear = Ke (DOsat —DO)  (6)

Where: DOy, saturation content of DO; K,:

the reaeration coefficient.
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DOsat = 14.625 — 0.41022T + 7.99x 1073T?

—7.7774x1075T3 (7)

DOy is calculated with temperature in Equa-

tion (7). The response coefficient is influenced

by wind speed and temperature. As stated by

Antonopoulos et al. [8], K, can be calculated
using Equations (8) and (9).

02w

, W=35bm/s
Kezo = {0.057w2

, W=>35m/s ®)

Ke = Kezo-e;l:_zo )]

Where: Or: reaeration temperature coefficient
at 1.024; W: wind speed; K,.pq: reaeration coeffi-
cient at 20°C.

Mechanical aeration

Diffusion aeration systems utilize a high-
volume air blower to deliver air to diffusers
placed in the water. Various types of diffusers are
used in crab farming, including porous ceramic
tubes, perforated rubber tubes, and perforated
plastic tubes [9]. The rate of oxygen transfer
is influenced by the gradient between the DO
concentration and oxygen saturation in the water,
as well as the water temperature. The actual oxy-
gen transfer rate for an aeration diffuser system
operating in a fish pond can be calculated using
Equation (10).

24
——— XaXs

DOsat—DO —
A, =S X ———— X 81720 x
er OTR a volume

9.09 ( 10)

Where: Oa: aeration temperature coefficient;
SOTR: the oxygen transfer rate under standard
conditions (20°C); volume: the volume of the
crab pond; a environmental correction constant
to correct the error between a crab pond and the
test water; s: the working status (on or off) of the
aerator.

Mineralize

Heterotrophic microorganisms break down par-
ticulate organic matter into inorganic matter
through mineralization, which can then be uti-
lized for the growth of aquatic organisms. This
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process is crucial for material cycling within the
ecosystem [10]. Chapelle et al. [11] noted that in
the water column, mineralization is temperature-
dependent. The formula for calculating mineral-
ization is provided in Equation (11).

Mj, = ming X e*T X Oppy X Cpy  (11)

Where: kT': temperature coefficient of the bio-
chemical reactions; ming: the rate of mineraliza-
tion at 0°C; O,,: Oy consumed per mmole of
organic matter mineralized; C,,,: the content of
organic matter.

Crab respiration

As a key species in aquaculture, crabs require
oxygen and energy for locomotion, growth, and
digestion. The assimilation process in crabs relies
on oxygen consumption for metabolic activities,
resulting in a reduction of DO levels. Zou et
al. [12] investigated the effects of body mass
and temperature on the respiration rate of crabs.
Comparative experiments were conducted using
Eriocheir sinensis of various sizes, as outlined in
Equation (12) was used in this work to calculate
the respiratory rate.

R . A
crab = jio(zasi-0.12eT)

xMB  (12)

Where: R.,q,: Crab respiration; M: crab mass
(g.m*3); A: the limitation of crab respiration; 3
a negative constant of crab mass coefficient.

C. Distributed dissolved oxygen at different
depths

The one-dimensional vertical transport of DO
in crab ponds according to Solomon et al. [13] is
described by the diffusion equation in the form
of Equation (13).

aDo 8*Do
e D—az + S (13)
Where: D: the diffusion coefficient

(m*day™"); z: the pond depth; S: the term
of all DO sources and sinks acting in each layer.

In pond environments, the diffusion coefficient
of oxygen (D) is typically modeled based on the
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horizontal area and the steady-state frequency as-
sociated with water density [14]. However, since
crab ponds are much shallower than lakes, the
vertical stratification affecting aquaculture waters
is less significant. As a result, in this study, the
diffusion coefficient is assumed to be constant
across both depth and time. Since water absorbs
portions of the light spectrum, irradiance de-
creases with depth. To account for the reduction
of solar radiation and its effect on the vertical
distribution of DO, the formula representing the
variation of solar radiation with depth is applied,
as shown in Equation (14).

(—EC.z)

I,=1Le (14)

Where: I: solar radiation at water surface; I,:
solar radiation at depth z; EC: the extinction
coefficient of water.

The ordinary differential Equation (1) is solved
using the four-step Runge-Kutta method with a
time step of 10 minutes. The detailed calculation
steps of this method are provided by Hussain
et al. [15]. The partial differential Equation (13)
is solved using the semi-implicit Crank-Nicolson
method. Unlike explicit and implicit finite differ-
ence methods, which impose restrictions on the
diffusion coefficient, time step size, and layer
thickness, the Crank-Nicolson method offers a
stable numerical solution to the diffusion equa-
tion without these limitations. After applying the
Crank-Nicolson discretization scheme, Equation
(13) is reformulated as Equation (15).

tDP, 541 = —TDP_yj41 + (2 + 2rD)B 4 — DR 45
1
— (2 = 2rD)Pyj — rDPy 15 — S At(S;5 + Sijea)

Where: P, P; represents the content of DO
in space z (z = iAr) and time t (¢t = jAt) and

t
r= W)' Finally, a system of linear algebraic

equations, with a triangular matrix, is obtained in

(15)
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the form of Equation (16).

242rD —-rD 0 0 0 0 Py
0 =D 242D - 0 0 0 Pajy
0 0 0 e 2=2rD rD 0 Py_sjs1
0 0 0 0 D 2=2rD | | Py_aj
1
E’{Su +51j01)
. — 47 ; 1
2rDPoj + (2 = 2rD)Pyj + rDP ;r{Sz,,- + S:_r'+1)

2DP,; + (2 — 2rD)Ps,; + rDPs,
: +
2¥DPy_y; + (2 = 2rD)Py_s; + rDPy_s;

1
2¥DPy_s; + (2 — 2rD)Py_s; + rDPy_y; S (8w o+ Swosjon )

1
EF{SNJJ +Syv_2in )

16)

The above system of linear equations is solved
by the Thomas algorithm.

D. Model analysis, validation, and sensitivity

To ensure that the model output aligns with
real-world conditions, calibration of the model
is essential. Since the photosynthesis and res-
piration rates of aquatic macrophytes vary, and
the oxygen transfer rates of aerators differ across
various water environments, it is necessary to
adjust the parameters involved in these processes.
Parameter optimization is achieved using the
Levenberg-Marquardt algorithm. The computa-
tional procedures for the Levenberg-Marquardt
algorithm are detailed in Ampazis et al. [16].
To evaluate the model’s performance, test data
not used during calibration are employed for
validation. The mean absolute percentage error
(MAPE) is used as a metric for model perfor-
mance, with the calculation formulas provided in
Equation (17).

100

MAPE = —x

N |¥Vi—¥i
= i=1|—y| (17)

i

Where: y;: the measurement; y;: the model
prediction; N: the number of samples
Sensitivity analysis was used to measure the
influence of model parameters on DO changes.
The sensitivity analysis formula is a list like
Equation (18).
1 n

e 100
Sensitivity = - X i=1

|vi 7l
n )

(18)
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Where: n: the sample number simulated; r: the
variation range of parameters (+ 10% or - 10%);
v;: the new variable value of DO; v;: the original
value simulated.

III. INVESTIGATION DESIGN
A. Survey model structure

The control cabinet includes devices: Buck
circuit, power supply relay module, ESP 8266
module, TTL to RS485 module used to switch
devices and transmit data to computers or other
smart devices, DO sensor, pH measuring sensor,
temperature and humidity sensor, rain flow sen-
sor, salinity sensor, and wind speed sensor. The
system’s power sources include a 220 V AC grid
connection and a 12 V DC solar battery (30 W).
A power supply switch allows toggling between
grid power and solar power. A buck converter
circuit steps down the 12 V DC to 5 V DC,
supplying power to the ESP8266 module and
the USB 4G modem, both of which require a
minimum current of 1,200 mA. A relay module
controls the 12 V power supply to the TTL-to-
RS485 module. The ESP8266 module reads data
from sensors through the TTL-to-RS485 module,
then sends the data to a website for storage, and
connects to a Wi-Fi signal provided by the 4G
USB modem. It reads sensor data every 15 min-
utes, updates the website with new data, and re-
peats the cycle continuously. The TTL-to-RS485
module reads sensor signals, converts them, and
sends them to the ESP8266 module. The TTL
to RS485 conversion circuit is designed with the
UART communication standard, to convert com-
munication from the RS485 standard to the TTL
standard and vice versa (suitable for all types of
microcontrollers and embedded computers). Sen-
sors that collect pond environmental parameters
(oxygen concentration sensor, water temperature
sensor, pH sensor, humidity sensor, air tempera-
ture precipitation sensor, and wind speed sensor).
Each type of sensor was set up with a different ID
due to the ModbusPoll application. The signals
from the sensors are connected and transmitted
through two wires RS485A+ and RS485B—. The
measurement signal from the sensor was saved in
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the corresponding registers, the actual value was
read and decoded by the ESP 8266, then the data
was sent to the website every 15 minutes.

solar battery

12VDCto 5V DC

Module Relay
Madule TLL ta RS485.

Fig. 2: Device structure used in the model

B. Realistic model

Fig. 3: Crab pond and actual model used for the
research
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The system design is used in crab farming
ponds in Duyen Hai District, Tra Vinh Province,
with a total crab farming area of 1,200 m?, with
an output of 850 crabs, the age of crabs was about
a month with an annual output of 300 kg. The
crab pond is a rectangle with length, width, and
depth dimensions of 100 m, 12 m, and 1.5 m,
respectively. The selection of experimental crabs
in pond water took place in October 2022. The
age of the crabs was about 1.5 months and the
crabs were in the development stage. The pH
of the water ranges from 7.71 to 7.98 and the
water temperature ranges from 28°C to 30.31°C.
Data collected from 13" to 17" October 2022
includes: data on DO content, temperature mea-
sured directly by a sensor placed in the middle
of the pond and measured every 15 minutes, and
wind speed estimated according to the results and
measured by the local meteorological manage-
ment agency.

C. Algorithm used in simulation

The data collected from sensors in two time
frames, 24 hours and 96 hours, is used in the
article. Simulations are then conducted, incor-
porating three models: physical models, neural
networks models, and ARMAX models.

In the physical models, the mathematical equa-
tions presented in Section II are applied and then
compared with the simulation results obtained
from the collected data.

In the artificial neural network model, sim-
ulations are conducted using three algorithms:
Levenberg-Marquardt, Bayesian regularization,
and scaled conjugate gradient. Each algorithm
simulates networks with 10, 15, 20, 25, and 30
hidden neurons.

Figure 5 depicts an artificial neural network
model on Matlab Simulink with DOinputsseries
as input data from pH sensors, temperature sen-
sors, salinity sensors located at crab ponds, and
DOrealoutseries taking data from DO sensor lo-
cated at the crab pond.
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Fig. 4: The physical model in Matlab Simulink

DO Differences

-4
Function Fitting Neural Network1

Fig. 5: The artificial neural network model in
Matlab Simulink

In the regression network model, three algo-
rithms including Levenberg Marquardt, Bayesian
regularization, and scaled conjugate gradient are
simulated.

DOreal

]

DO Differences

| »>|

DOmodel

9
NARX Neural Network1

Fig. 6: The regression network model in Matlab
Simulink

Figure 6 is a regression network model on
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Matlab Simulink with DOinputsseries as input
data from pH sensors, temperature sensors, and
salinity sensors located at crab ponds, DOreal-
outseries taking data from DO sensor located
at the crab pond, and linear regression data is
DOrealoutseries.

D. Determine parameters

Table 1 presents the simulation parameters for
algorithms in Matlab Simulink as presented in
Equation (1).

IV. RESULTS AND DISCUSSION

A. Simulation based on the physical models in
Matlab Simulink

Applying Equation (1) in the simulation using
Matlab Simulink produces the dashed line in
Figure 7, while the actual data collected from the
experimental crab pond produces the solid line in
Figure 7.

The physical model used mathematical equa-
tions to simulate DO dynamics. However, as
shown in Figure 7, the theoretical model’s predic-
tions (dashed line) diverged significantly from the
actual data (solid line). This inconsistency aligns
with the limitations identified by Xinkai et al. [1],
where traditional one-dimensional models could
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Table 1: Controller parameters

Symbol Value Describe
T real-time | water temperature
I real-time | solar radiation
W real-time | wind speed
B 100 | macrophyte biomass
Com 3 | the content of organic matter
s 0 or 1 | working status of the aerator
a 0.1100 | regression coefficient
b 0 0760 temperature -:_oeﬁ'mient of
photosynthesis
Lopt 300 optimum solar radiation for
macrophyte
0.0096 | regression coefficient
n temperature coefficient of
0.0400 | =P
macrophyte
[} reaeration temperature
r 1.0240 on TP
coefficient
SoTr 32 | Standard oxygen transfer rate
a, 1.0240 | aeration temperature coefficient
v 1200 | volume of pond water
a 0.7 environmental correction
| constant
M 850 | crab mass
ming 0.2000 | the rate of mineralization at 0°C
k temperature coefficient of
T 0.0630 | | PErEE
mineralization
[ 02 consumed per mmol N
om 02120 N i per
mineralized
A 0.0300 | the limitation of crab respiration
B -0.5000 | crab mass coefficient
= ==  DOSim
100 [ T ll 4
!
80 - Il '
]
e :
60 - '|llll it ‘l\
U oy
Iy
n nfu h
40 I T
| i A \
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20 f Ty v 1
-_— e e—
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Fig. 7: Simulation results from the physical
models
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not capture the three-dimensional variations in
DO levels accurately. Consequently, while the
physical model demonstrated certain expected
trends, its low correlation with real conditions in
crab ponds suggests that physical models alone
may not suffice for DO control in dynamic aqua-
culture environments.

B. Simulation based on the artificial neural net-
works model in Matlab Simulink

Figure 8 describes the simulation result from
the neural network in 24-hour from three al-
gorithms, Levenberg Marquardt, Bayesian regu-
larization, and scaled conjugate gradient at 20
hidden neurons and 25 hidden neurons. The three
first figures (Figure 8a, Figure 8b, Figure 8c) sim-
ulate the result from the Bayesian regularization
algorithm, Levenberg-Marquardt algorithm, and
scaled conjugate gradient algorithm at 20 hid-
den neurons, respectively. Then, the simulation
results from the three algorithms at 25 hidden
neurons are presented in Figure 8d, Figure 8e,
Figure 8f. The solid line represents the actual
24-hour dissolved oxygen concentration and the
dotted line represents the dissolved oxygen level
when applying the artificial neural model. The
above six results in the scaled conjugate gradient
algorithm at 20 hidden neurons (Figure 8c) were
compared for the best results.

a. h24crabdonn20hiddenbr b. h24crabdonn20hiddenlm c. h24crabdonn20hiddenscg

d. h24crabdonn25hiddenbr e. h 125hiddenlm f. h: 125hiddenscg

Fig. 8: Simulation results from the 24-hour
simulated artificial neural network model

Figure 9 is the simulation result from the
neural network in 96-hour from three algorithms,
including Levenberg Marquardt, Bayesian regu-
larization, and scaled conjugate gradient at 25
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hidden neurons and 30 hidden neurons, detailed
in Figure 9a, Figure 9b, Figure 9c, Figure 9d,
Figure 9e, Figure 9f, respectively. The above six
results in the scaled conjugate gradient algorithm
at 30 hidden neurons were compared for the best
results.

Fig. 9: Simulation results from the 96-hour
simulated artificial neural network model

The artificial neural network model was evalu-
ated across three algorithms: Bayesian regulariza-
tion, Levenberg-Marquardt, and scaled conjugate
gradient, with simulations conducted for both 24-
hour and 96-hour intervals. The scaled conjugate
gradient algorithm at 20 and 30 hidden neurons
produced the most accurate results, closely align-
ing with actual DO levels (Figures 8c and 9f).
This finding is consistent with previous research
by Xinhui et al. [2], who found that adaptive
models, particularly those incorporating neural
network techniques, outperformed static physical
models due to their flexibility in adjusting to real-
time environmental changes.

C. Simulation based on the regression network
models in Matlab Simulink

The simulation results from the regression
network models in Matlab Simulink over a 24-
hour period are presented in Figure 10. Figure
10a displays the simulation results obtained using
the Bayesian regularization algorithm with 10
hidden neurons. Figure 10b shows the simulation
results from the Levenberg-Marquardt algorithm,
also with 10 hidden neurons. Meanwhile, Fig-
ure 10c presents the simulation results from the
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scaled conjugate gradient algorithm, again with
10 hidden neurons.

¢. h24crabdonarx10hiddenscg

1arx10hiddentm

a.h 1arx10hi b. h;

Fig. 10: Simulation results from the 24-hour
simulated regression model

When simulating the system under a 24-hour
regression model, the solid line represents the
actual 24-hour dissolved oxygen concentration
and the dotted line represents the dissolved oxy-
gen level when applying the regression model.
Simulation results from the regression model are
quite good in the short term. However, when there
are long-term changes, the results diminish.

A
¥l
Ao b
) \%‘r“ "4’“ N\W‘)‘&‘r‘ !K
: ' ' W‘W

c. h96crabdonarx10hiddenscg

a. 10hi b. rarx10hiddenlm

Fig. 11: Simulation results from the 96 hours
simulated regression model

Figure 11 is the simulation result from the
simulated regression model for 96 hours, the
solid line represents the actual dissolved oxygen
level, and the dotted line represents the dissolved
oxygen level when applying the regression model.
Simulation results from the regression model
simulated for 96 hours when both curves are
almost the same. From there, this model is quite
accurate compared to reality.

Regression models, while more straightfor-
ward, showed promising results in short-term
simulations (24 hours, Figure 10) but exhibited
reduced accuracy in longer-term scenarios (96
hours, Figure 11). This aligns with Xinhui et al.’s
findings [2], where short-term predictive models
achieved high accuracy but struggled to adapt
over extended periods without significant recali-
bration. Despite these limitations, the regression
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model’s effectiveness in short-term DO control
suggests its potential for specific applications,
such as short-term monitoring and rapid response
in aquaculture systems.

From the simulation results presented above,
for physical models that are not accurate to
reality, it is necessary to find an optimal solu-
tion to adjust these parameters, such as genetic
algorithm, swarm algorithm forums, artificial
neural networks model, and regression network
models that have a close connection to reality.
However, the control devices in the regression
network models are quite complex and expensive.
Therefore, flexibly applying different control al-
gorithms depending on actual conditions in aqua-
culture will help increase production efficiency
and save energy.

V. CONCLUSION

Equipment, including smart sensors such as
dissolved oxygen sensors, temperature sensors,
and pH sensors, was developed to collect data
from crab ponds in Duyen Hai District, Tra Vinh
Province, Vietnam. Data were gathered under
varying conditions and at different times. Subse-
quently, Matlab Simulink software was employed
to process the data using three models: physical
models, artificial neural network models, and
regression network models. Analysis of the sim-
ulation results indicates that the artificial neural
network model is the most suitable for controlling
dissolved oxygen concentration in practical appli-
cations, according to this study. These research
findings can contribute to enhancing devices for
adjusting dissolved oxygen concentration in crab
ponds, helping crab farming households improve
aquaculture productivity, quality, and production
efficiency.
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