TRA VINH UNIVERSITY JOURNAL OF SCIENCE, VOL. 14, SPECIAL ISSUE (2024)

DOI: 10.35382/TVUIJS.14.8.2024.84

BEHAVIOR RECOGNITION WITH LSTM DEEP LEARNING MODEL
AND MEDIAPIPE

Tran Song Toan', Minh-Hai Le?*, Huu-Phuc Dang?

Abstract — Human behavior recognition is
crucial for assisting and monitoring the activities
of patients, particularly, the elderly or young
children. With the advancement of technology,
modern methods based on computer vision have
been developing. Deep learning is one of the
prominent methods for dealing with problems
related to behavior recognition. In this study,
a long short-term memory deep learning model
is used for identifying abnormal behaviors. The
MediaPipe library is used to collect body points
and consecutive frames to generate training data
and recognition. The behaviors considered in
this paper include headache, stomachache, fall
down, and others. With the dataset collected from
videos and self-recorded, the experimental results
show that the proposed long short-term memory
network model achieves 94.54% accuracy in be-
havior recognition. This result demonstrates the
feasibility of the proposed model for the task of
behavior recognition.

Keywords: deep learning, human behavior
recognition, long short-term memory (LSTM),
MediaPipe.

I. INTRODUCTION

Human action recognition (HAR) is an inter-
disciplinary field that combines computer vision
with other disciplines to analyze human move-
ment, balance, posture control, and interaction
with the environment. It encompasses areas such
as biomechanics, computer vision, image pro-
cessing, data analysis, nonlinear modeling, arti-
ficial intelligence, and pattern recognition. HAR
can be analyzed using two-dimensional, depth,
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or thermal images or motion, body-mounted sen-
sors, or smartphones. HAR has been extensively
researched due to its numerous applications in
various domains and complexities, with promi-
nent applications in safety, environmental mon-
itoring, video surveillance [1, 2], robotics [3],
and the like. In the context of safety and video
surveillance, HAR can be employed to assist in
monitoring the elderly, patients, or children.

Another approach to behavior recognition in-
volves analyzing captured images. Employing
image processing algorithms and deep learning
models, one can extract meaningful insights into
the actions of individuals within videos. Deep
learning methods have gained prominence in this
domain due to their exceptional generalization
capabilities and the ability to circumvent the need
for handcrafted feature extraction [4].

Convolutional neural networks (CNNs) have
emerged as a popular choice for behavior recogni-
tion tasks [5]. Long short-term memory (LSTM)
networks have also gained significant traction
in this domain [6]. The effectiveness of deep
learning models for behavior recognition hinges
on the ability to extract relevant features that
facilitate accurate and efficient classification. In
the context of HAR, the features of interest are
the positions of keypoints on the human body
across a sequence of video frames. CNNs, while
powerful for feature extraction, may not be well-
suited for directly capturing these keypoints. To
address this limitation, the proposed approach
utilizes the MediaPipe library [7] to extract key-
points and combines features from consecutive
frames as input to a LSTM network. This model
can be implemented without demanding hard-
ware requirements. The dataset employed in this
study comprises videos collected from YouTube
and self-recorded videos.
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The presented study makes significant contri-
butions to the field of HAR, particularly in the
context of video-based behavior analysis. The key
contributions are summarized as follows:

1. Leveraging MediaPipe for feature extraction:
The proposed approach utilizes the MediaPipe
library to extract keypoints from video frames,
providing a robust and efficient mechanism for
feature extraction.

2. Combining MediaPipe with LSTM and neu-
ral networks: The study effectively integrates
MediaPipe-extracted keypoints with an LSTM
network and neural network architecture for be-
havior recognition. This combination harnesses
the strengths of both techniques to achieve accu-
rate and efficient classification.

3. Comprehensive dataset evaluation: The re-
search employs a comprehensive dataset com-
prised of both publicly available and self-
collected videos to evaluate the proposed model.
This diverse dataset ensures the robustness and
generalizability of the findings.

II. METHODOLOGY
A. System overview

This workflow highlights the key steps in-
volved in the proposed human behavior recogni-
tion system. The system effectively utilizes Me-
diaPipe pose for feature extraction and an LSTM
model for behavior classification, demonstrating
a promising approach for analyzing and interpret-
ing human actions in videos.

The proposed system for human behavior
recognition follows the workflow depicted in
Figure 1. The system receives a video as in-
put. MediaPipe pose is employed to extract 33
skeletal points from each frame of the video.
Each skeletal point is represented by four co-
ordinates: (X, y, z, visibility). These coordinates
are flattened into a 132-dimensional array (33
points * 4 coordinates). Consecutive 30 frames
of the flattened coordinate arrays are combined
into a sequence. This sequence serves as the input
to the LSTM model. The trained LSTM model
analyzes the input sequence. The model classifies
the sequence into one of the predefined behavior
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categories. The system outputs the recognized
behavior as the final result.
H Results ’

Behavior
Input data recognition with
LSTM

Fig. 1: System overview

Keypoints
extraction with
Mediapipe

The study focuses on recognizing three pri-
mary behaviors: falling, headache, and stom-
achache. Any other actions are classified as ‘other
behavior’. Figure 2 illustrates the data collection
process for training the LSTM model. Videos
with corresponding behaviors are collected. Each
video has a duration of 10 minutes with a reso-
lution of 720 x 1280 pixels. Different body parts
are identified in each frame. The movement of
these body parts is analyzed over time. Upon pose
detection, 33 body keypoints are extracted.

L Input data H { H LSTM training J

Fig. 2: Data collection and sampling for training

Keypoints
extraction with
Mediapipe

Create the
training data

B. LSTM model

LSTM networks are a type of recurrent neural
network (RNN) specifically designed to han-
dle sequential data with long-term dependencies.
They have emerged as powerful tools for pro-
cessing and understanding time-series data, par-
ticularly in scenarios where long-range patterns
and dependencies are crucial. LSTM networks
incorporate memory cells that enable them to
store and retain information over extended pe-
riods, addressing the vanishing gradient problem
that plagues traditional RNNs. LSTM networks
excel at capturing long-term dependencies in se-
quential data, making them suitable for tasks like
natural language processing, speech recognition,
and time-series forecasting.

LSTM networks utilize three main gates: the
input gate, the forget gate, and the output gate.
These gates regulate the flow of information into,
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through, and out of the memory cells, allowing
for selective memory updates and controlled in-
formation processing.

Forget Gate — f;: The forget gate determines
what portion of the current cell state is retained,
selectively erasing outdated or irrelevant informa-
tion.

= O’(Uf wxy + Wew ey + bf] (1)

Input Gate — i;: The input gate controls the extent
to which new information is added to the cell
state.

ip=0(U;=x, + Wr#hy +b;) (2)

Output Gate — o;: The output gate regulates the
flow of information from the cell state to the out-
put of the block, determining what information is
made available to subsequent blocks.

0, =0(U,*x, + W, =h,_; +b,) (3)
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Fig. 3: The state of an LSTM (long short-term
memory) network at time step t [8]

Where ¢; is the cell state, i, denotes the hidden
state, x; is the 7/ input of the model and 4,_1,¢;_
presents the output of the previous layer.

The LSTM model employed in the study con-
sists of eight layers, as illustrated in Figure 4. The
core of the model comprises four LSTM layers
with varying numbers of neurons: [64, 128, 256,
256]. These layers capture and process temporal
dependencies in the sequential data. Following
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the LSTM layers, a layer normalization layer
is introduced. This layer normalizes the activa-
tion values of the previous layer, improving the
training process and overall model performance.
Four fully connected layers are used to combine
and transform extracted features for classifica-
tion. The softmax activation layer is used to
generate a probability distribution over the four
behavior classes (falling, headache, stomachache,
and others). The specific training parameters and
hyperparameters for the LSTM model are pre-
sented in Table 1. These parameters govern the
optimization process and influence the model’s
learning behavior.

LSIM - Dropoul LuyerNormalizalion

Fig. 4: The LSTM model used in this study

Table 1: The parameters of the model

Parameter Value
LSTM hidden layer [64, 128, 256, 256]
Dropout rate 0.2
Layer Normalization 1

Dense neural node [128, 256, 64, 4]

C. Mediapipe pose

MediaPipe pose is an open-source real-time
human pose estimation solution developed by
Google. It utilizes machine learning models to
estimate the 3D positions of 33 keypoints on
the human body from videos or images. These
keypoints provide valuable information about an
individual’s posture and movements.

In this study, the 33 keypoints extracted from
MediaPipe pose are collected continuously over
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30 frames, forming a data sample for training
the LSTM model. The model utilizes this data
to recognize human behaviors. Each of the 33
keypoints has four corresponding values: x, y, z,
and visibility. These values represent the 3D co-
ordinates (X, y, z) of the keypoint and its visibility
score (0 for invisible, 1 for fully visible). To pre-
pare the data for the LSTM model, an array was
created by concatenating the four corresponding
values for each keypoint. This results in a 132-
dimensional array (33 keypoints * 4 values per
keypoint). This array serves as the input to the
LSTM model.

The integration of MediaPipe pose with the
LSTM model enables the system to effectively
process sequential pose data and recognize hu-
man behaviors from videos or images. MediaPipe
pose provides accurate 3D pose estimation, while
the LSTM model excels at handling temporal
dependencies and classifying behaviors based on
the pose sequences.
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Fig. 5: The 33 keypoints of MediaPipe pose

III. EXPERIMENTS
A. Datasets

A dataset was constructed for model training
and evaluation through the collection and analysis
of video data. Data sources included social media
platforms and original recordings. Subsequent
to data acquisition, a meticulous analysis and
labeling process was undertaken according to
the methodology outlined in Section II-A. A
comprehensive overview of the dataset employed
in this study is presented in Table 2.
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To effectively evaluate the model’s perfor-
mance, the initial dataset was divided into train-
ing and evaluation sets. The training set is used
to train the model, while the evaluation set is
used to assess its performance. The training set
comprises 80% of the initial dataset, while the
evaluation set comprises 20%. The detailed sam-
ple sizes are presented in Table 2.

Table 2: Amount of data for experimental

Eehaviors Training Testing Total
Headache 15200 3800 19000
Fall down 15200 3800 19000
Stomach-ache 15200 3800 12000
Others 15200 3800 19000
Total 60800 15200 76000

B. Experimental setting

The training process was carried out on a
personal computer equipped with a Ryzen 5000
CPU, an RTX1050 GPU, and 8GB of RAM,
using the PyCharm software. The training param-
eters are detailed in Table 3.

Table 3: Hyperparameter of the model

Hyperparameter Value
Learning rate 0.01
Batch_size 32
Epochs 100
Frames 30
Optimizer Adam optimizer
Loss function Categorical Cross Entropy

Categorical cross-entropy is a commonly used
loss function for measuring the difference be-
tween true and predicted probability distributions
in multi-class classification tasks. The formula
for categorical cross-entropy for a single data
sample is presented in Expression (4).

H(y,9) = =X y:log(¥$:) ()

where H(y,¥) is the categorical cross-entropy
loss function, n denotes the class number, y; is
the ground truth and y; show the predicted class
i.
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C. Traing process

The model was trained for 100 epochs and then
evaluated using loss and accuracy metrics. The
model employed an early stop callback to halt the
training process prematurely if the monitored pa-
rameter (either validation accuracy or validation
loss) did not improve after a specified number
of epochs. The training results indicate that the
model achieved satisfactory performance after 50
epochs and was terminated due to the early stop
mechanism.

Figures 6(a) and 6(b) depict the loss and ac-
curacy curves over 50 epochs, with the blue line
representing the training dataset values and the
orange line representing the test dataset values.
The loss and accuracy values exhibit an inverse
relationship. During the initial 15 epochs, the
values are unstable, the accuracy is low, and the
test data is not yet very accurate. From approxi-
mately epochs 15 to 50, the values gradually sta-
bilize, become more accurate, and the difference
between the training and test data diminishes.
Figure 7 demonstrates that the model’s accuracy
on the test set even surpasses that of the training
set, indicating that the model is performing quite
well. As the number of epochs increases, both
train loss and test loss decrease, while train
accuracy and test accuracy increase.

(a)

L)

Fig. 6: The learning curves: (a) Loss value
and (b) Accuracy value
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IV. RESULTS AND DISCUSSION
A. The metrics

Accuracy, Precision, Recall, and Fl1-score are
metrics employed to evaluate the training and
testing processes of test samples. The formulas
for determining Accuracy, Precision, Recall, and
Fl-score are presented in Expressions (5), (6),
(7), and (8).

Accuracy = &Um (5)
Precision = —— (8)
TP+FP
Recall = —— (7
TP+FN
F1 — Score = LL (8)
TP+(FP+FN]

where TP (true positive): the total number of
cases where the model correctly predicted a posi-
tive sample; TN (true negative): the total number
of cases where the model correctly predicted a
negative sample; FP (false positive): the total
number of cases where the model incorrectly
predicted a negative sample as positive; FN (false
negative): the total number of cases where the
model incorrectly predicted a positive sample as
negative; N: the total number of samples used for
prediction.

B. Experimental results

Utilizing the sample sizes of the training and
testing sets, the sklearn library was employed
to compute the model’s metrics. The model’s
performance is summarized in Table 4.

Table 4: LSTM model training results

Recall
9457

F1 Score
0422

Precizsion
085 66

Acccuracy
04 54

Metrics
Eesults (%)

To evaluate the overall system’s performance,
20 real behavioral samples were tested. The re-
sults presented in Table 5 indicate that the overall
system identification rate is lower due to the
dependency on the keypoint collection process.
Since the ‘other behavior’ in the synthetic dataset
used for pretraining involves simpler movements
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compared to those in the real dataset, the pre-
diction results for identifying ’other behavior’
on the real dataset frequently misclassify it as
‘Stomach-ache’ or ‘Fall down’. ‘Stomach-ache’
can be easily confused with normal behavior as
these two actions are quite similar, except that
in ‘Stomach-ache’ the user will place their hand
on their abdomen. For ‘Fall down’ the model
performs better than for other behaviors. Figure
7 presents some correct behavior identification
results from the frames.

Table 5: Confusion matrix in the real set
with 20 samples

St h-ache Headach Fall down | Others
3 h-ache 12 2 2 4
Headach 2 13 3 2
Fall down 2 0 16 2
Others 4 1 4 LL

Headache

Fall down

Fig. 7: Behavior recognition results

V. CONCLUSION

The paper presents a novel approach for iden-
tifying patient behaviors using a deep learning
LSTM model. The system utilizes the MediaPipe
library to extract keypoints from human postures
and constructs a recognition dataset by com-
bining consecutive frames. The proposed model
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demonstrates promising performance through
training and testing evaluations. While some in-
accuracies remain in real-world system operation,
the model showcases the potential and feasibility
of human behavior recognition from videos.
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