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ANALYZING GIT LOG IN AN CODE-QUALITY-AWARE AUTOMATED
PROGRAMMING ASSESSMENT SYSTEM: A CASE STUDY
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Abstract -  Automated  programming
assessment  systems have transformed the
evaluation of programming  assignments,

providing detailed feedback and reducing
instructors’ workload. This paper explores the
benefits of Git log analysis in ProgEdu, a
code-quality-aware  automated  programming
assessment system. ProgEdu was utilized for
assessing Java homework assignments and web
programming projects over two semesters. The
integration of Git log analysis in ProgEdu
highlights its potential in tracking student
progress, predicting performance, determining
student groups based on submission behaviors,
identifying inequality in group projects, and
facilitating instructors’ intervention. The study
emphasizes the importance of enhancing software
industrial practices in programming courses,
including code version control, static code
quality checking, unit testing, and automation
tools. By incorporating these practices, students
benefit from hands-on learning and situated
learning experiences. Embracing these practices
enhances the learning experience, improves
student performance, and fosters a collaborative
programming environment. It highlights the
benefits for students and instructors, urging
institutions to invest in software industrial
practices and demonstrating the potential impact
on programming education.
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I. INTRODUCTION

In recent years, the field of programming
education has  witnessed a  significant
transformation ~ with  the introduction of
Automated Programming Assessment Systems
(APASs). These systems have revolutionized the
way programming assignments are evaluated,
providing educators and students with numerous
advantages and opportunities. APASs leverage
the power of automation and technology to
streamline the assessment process, offering
efficient and objective evaluation of code
submissions. By automating the grading process,
APASs reduce the burden on instructors, freeing
up valuable time that can be dedicated to other
aspects of teaching and learning. Moreover,
APAS provides consistent and fair evaluations
by applying predefined criteria consistently to all
submissions, minimizing subjective biases [1].
The incorporation of APASs also enables the
provision of immediate and detailed feedback
to students, allowing them to understand their
mistakes, learn from them, and enhance their
coding skills. Additionally, APAS facilitates
the tracking of student progress over time,
providing educators with valuable insights into
individual learning trajectories and allowing for
personalized interventions when needed [2]. By
integrating APAS into programming courses,
students have the opportunity to enhance their
programming skills through repetitive practice,
fostering a sense of mastery. Furthermore, the
incorporation of APAS can stimulate students’
enthusiasm for learning programming through
the introduction of peer competition [3]. Fruitful
results were obtained from implementing APASs
effectively, such as the integration of code-quality
analysis, scalability, and adaptability to different
programming languages and assignment types
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[4]. Overall, APAS represents a powerful tool
that has the potential to enhance programming
education by automating assessment processes,
providing timely feedback, and optimizing the
learning experience for both educators and
students.

The analysis of log data APAS plays a crucial
role in gaining insights into student performance,
behavior, and progress. The log data collected
by the APAS captures valuable information about
students’ coding activities, interactions with the
system, and submission history. One key aspect
of log data analysis is the ability to predict
student performance. By examining patterns in
coding behavior, such as frequency of submis-
sions, code quality, and revision history, the
APAS can make informed predictions about a
student’s overall performance [5, 6]. This pre-
dictive capability allows instructors to identify
struggling students early on and provide targeted
interventions to support their learning journey.
Another valuable application of log data analy-
sis is the identification of submission behaviors
and patterns. By analyzing the timestamps and
frequency of submissions, instructors can gain
insights into student engagement and adherence
to deadlines. This information can be used to
identify students who consistently submit their
work late or exhibit erratic submission behav-
ior, enabling instructors to address these issues
and promote better time management skills [7].
Furthermore, log data analysis in APAS facili-
tates the identification of group project dynamics
and inequalities. By analyzing the contributions
made by individual group members, the APAS
can uncover disparities in effort and participation,
highlighting potential issues of free-riding or
unequal workload distribution [8]. This insight
allows instructors to address these inequalities
and promote a more equitable and collaborative
group work environment. Lastly, log data analysis
enables the tracking of student progress over
time. By examining the evolution of students’
code submissions, instructors can assess their
growth, identify areas of improvement, and pro-
vide targeted feedback. This longitudinal view
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of student progress helps instructors personal-
ize their teaching approaches and support indi-
vidual student needs effectively [9]. This paper
explores the benefits of incorporating Git log
analysis in ProgEdu, a code-quality-aware au-
tomated programming assessment system. Over
two identical semesters, ProgEdu was utilized
to assess Java homework assignments and web
programming projects. The integration of Git log
analysis within ProgEdu highlights its potential
in tracking student learning progress, predicting
student performance, determining student groups
based on submission behaviors, identifying in-
equality in group projects, and facilitating timely
intervention by instructors. This study also em-
phasizes the importance of institutions enhancing
software industrial practices, such as code version
control, static code quality checking, unit testing,
and automation tools, in programming courses.
By implementing these practices, students not
only learn through hands-on experience but also
benefit from situated learning.

The results of this study strongly support the
broader implementation of code-quality-aware
automated programming assessment systems and
the integration of Git log analysis as an es-
sential component. This study emphasizes the
importance of institutions investing in software
industrial practices and highlights how Git log
analysis enhances the effectiveness of program-
ming educational tasks.

II. BACKGROUND AND RELATED WORKS

A. The ProgEdu System

ProgEdu is an innovative APAS that simulates
the workflow of DevOps, incorporating essen-
tial software industrial practices into the learn-
ing process of programming [10]. The system
has been designed with two primary rationales.
Firstly, it aims to reduce the workload of instruc-
tors by automating the assessment process and
promoting iterative learning, allowing students to
learn from their mistakes and improve through
a feedback-driven approach. Secondly, ProgEdu
aims to promote situated learning by providing
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students with early exposure to software indus-
trial practices, including code version control,
coding conventions, static code quality analysis,
unit testing, continuous integration/continuous
deployment (CI/CD), and DevOps principles.

ProgEdu is a docker-based application that
combines several components to fulfill its ob-
jectives. It includes a front-end website that acts
as a learning management system (LMS), where
students can access their assignments, submit
their code, and receive feedback. Additionally,
ProgEdu integrates with GitLab, serving as an
instance of a code version control service, en-
abling students to manage their code changes
and collaborate on group projects effectively.
Furthermore, an instance of Jenkins is utilized as
a CI server, where students’ source code is built,
and various quality checks, vulnerability scans,
security assessments, and code smell detections
are performed. The results of these assessments
are then provided back to the LMS, allowing both
students and instructors to review and learn from
the outcomes.

By combining the functionalities of LMS, Git-
Lab, and Jenkins, ProgEdu provides a compre-
hensive and seamless platform for students to
engage in hands-on learning, practice industry-
standard coding practices, and receive timely
feedback on their work. This approach empow-
ers students to develop their programming skills
while gaining practical experience with the tools
and processes commonly utilized in real-world
software development environments.

B. Literature review

Standalone Integrated Development Environ-
ments (IDEs) like Visual Studio and NetBeans
or text editors like Visual Studio Code and Sub-
lime Text have traditionally been the primary
tools used in programming education; however,
they fail to provide insights into student learning
progress. Code version control systems, such as
Git, have emerged as viable options due to their
ability to incrementally track source code changes
and offer valuable information to educators. The
incorporation of Git as a submission tool within
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Fig. 1: ProgEdu Architecture

APASs opens up a new long longitudinal view
enabling the identification of patterns, tracking of
improvement, and targeted feedback provision to
enhance the learning experience [11]. Moreover,
Git-based APASs foster collaborative learning
environments by leveraging Git’s collaboration
features. Students can engage in group projects,
track their contributions, and learn from each
other’s code [12, 13].

Git-based assessment systems, which are
drawing inspiration from collaborative practices
prevalent in the software industry, have garnered
attention in evaluating students’ performance in
collaborative learning, [14, 15]. Neyem et al.
[16] introduced an empirical approach for soft-
ware engineering (SE) courses, which involved
weekly coursework consultation sessions facili-
tated by a project tracking tool. This tool em-
ployed GitHub as a hosting platform to enhance
project traceability and aid students in under-
standing the implementation and testing of re-
quirements. Gary et al. [17] proposed a Continu-
ous Integration (CI) and Test platform to provide
continuous assessment and feedback on students’
activities, supporting their collaborative work in
SE projects. Raibulet et al. [18] utilized GitHub,
Microsoft Project, and the code inspection tool
SonarQube to foster collaboration among stu-
dents in SE projects. In a different context,
Eraslan et al. [19] utilized the GitLab repository
as a hosting platform for project artifacts and
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incorporated GitLab metrics, such as commit
count and the number of assigned and closed
issues, as fundamental information for course-
work consultation sessions in their SE courses.
While these studies demonstrated the viability of
integrating industrial tools and practices into stu-
dent software projects, the learning data collected
in the learning progress were not appropriately
considered. Our proposed scheme aims to address
this research gap by analyzing the Git log to bring
better insights to educators.

III. METHODOLOGY

ProgEdu was implemented in two identical
courses at Feng Chia University in Taiwan over
the span of two semesters. The first course fo-
cused on Object-Oriented Programming using
Java, while the second course centered around
Web Programming involving HTML, CSS, and
JavaScript. To foster iterative learning and en-
courage students to learn from their mistakes,
an unlimited resubmission policy within ProgEdu
was implemented. This policy allowed students
to receive feedback from the system and make
improvements to their programming skills. In
order to familiarize students with industry prac-
tices early on, the research emphasized the im-
portance of adhering to coding conventions by
conducting static code quality checks on each
submission. Consequently, students were required
to ensure that their submitted code passed syntax
checks, code quality assessments, and unit testing
before reaching a successful state.

A. Java homework assigments

In the first course, ProgEdu was employed to
evaluate six Java homework assignments. The
assessment outcomes for each submission en-
compassed Compile Failure (CPF), Unit Test
Failure (UTF), Check Style Failure (CSF), and
BuildSuccess. To analyze the students’ homework
performance, their efforts based on the frequency
of each result and tracked their time spent in
specific statuses was measured. Additionally, the
study considered factors such as the total number
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of submissions, the number of on-time submis-
sions, and the duration taken to start and com-
plete the assignments.

B. Web programming team projects

In the second course, ProgEdu was utilized
as the submission system for team projects fo-
cused on web programming. Students were tasked
with designing webpages using HTML, CSS, and
JavaScript. As a result, the status of the source
code may fall into values such as HtmICSF, Css-
CSF, or BuildSuccess. To assess the individual
contributions, an evaluation of the transitions was
made by each team member between different
source code statuses. These transitions are de-
picted in Figure 2. Correspondingly, contribu-
tions of an individual student are represented by
features listed in Table 2.

The team project aims to measure the balance
in contributions among members, thus the Gini
index, a popular metrics to measure the inequality
in economics was employed for this purpose.
Average values of the team on these measures
were also computed. We used the prefixes Gini-
and Avg- to denote these mesures.

In addition, to compare the contributions
among members, the Contribution Indexwas em-
ployed to calculate for each feature in Table 2
(Feature names have the prefix CI-). The CI of
a measure M of student S is calculated as the
ratio of contributions of student S per average
contributions of the team regarding metric M:

M
CI.Ms = M—S
T

C. The analysis workflow

To explore insights into students’ learning
progress using ProgEdu, this research established
a data analytics workflow as depicted in Figure
3. The first step involved extracting data from
the log database and computing the values of
relevant metrics as described in this section.
Subsequently, features were formulated for indi-
vidual students or teams based on the computed
metrics. The data was then analyzed using de-
scriptive statistics and visualizations to enable
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Table 1: List of behavioral features of students in homework submissions

Partial-level feature name

m Group (eg. for homework i) Overall-level feature name Description
1 CPF.Count; Total CPF.Count #submussions given CPF
2 CSF.Count; Total. CSF.Count #zubmissions given CSF
3 _ UTF. Count; Total UTF.Count #submissions given UTF
Homework effort . o
4 Sub. Count; Total Sub.Count; #submissions
5 Ontime.Sub. Count; Toral. Ontime.Sub. #on time submissions
Count
] Time. To.Start; Avg. Time. To.Start Time to first submission
7 0 ork Time. To.End; Avg. Time. To.End Time to last submission
8 ﬁ:‘;‘::u‘;; )t‘me CPF Duri Avg.CPF.Dur Duration staying in CPF
a CSF.Duri Avg. CSF. Dur Duration staying in CSF
10 UTF. Dur; Avg UTF. Dur Duration staying in UTF
KeepRight instructors to monitor students’ learning progress
o -~ effectively. In the next stage, machine learning
ntroErr . . . .
. _ techniques were employed for predictive analysis.
UnFix ‘InlroErr UnFix Unsu . d1 . 1 . h 1 d
pervised learning algorithms were utilize
PartFix CssCSF to identify groups of students or teams exhibiting
INEOE similar behavioral learning patterns. Additionally,
FI ) [ Py | —— supervised learning was employed to identify at-

v
-l BuildSuccess |

@

Fig. 2: Transitions between project statuses

Table 2: Individual features of students
in team project

1D Features Description
1 SubmTotal Number of submissions
2 BuildSucc Number of BuildSuccess
Number of CSF 1n
3 HmmlCSF HTML code
4 CsssCSE Number of CSF 1n CSS
code
3 IntroEry Num!:-;r of IntrErr
transitions
6 KeepRight Numbgr of KeepRight
transitions
7 UnFix Numbgr of UnFix
transitions
g PartFix Num_bgr of PartErr
tfransitions
9 AllFix Num!:-;r of AllFix
transitions
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Fig. 3: The data analysis workflow

IV. RESULTS AND DISCUSSIONS
A. Tracking submission progress

Using the log data extracted from the system, it
becomes straightforward to track students’ learn-
ing behaviors in both homework assignments and
team projects by plotting their submissions on a
dot-plot with a time axis, as illustrated in Figure
4 and Figure 5. These visualizations serve as a
reflection tool for students and provides valuable
insights for instructor interventions.
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In both scenarios, instructors can easily ob-
serve situations where students encounter diffi-
culties, such as issues with check style or multiple
failures in unit tests, allowing them to provide
timely support. Additionally, the dot plots reveal
patterns of late or infrequent submissions, which
further facilitate interventions from teachers.
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Fig. 5: Visualization of teams’ submissions and
assessment results in web programming projects

The dot plots generated from the log data
also highlight potential areas for improvement
in students’ learning processes. By analyzing
the distribution of submissions and identifying
clusters or gaps in the timeline, instructors can
identify patterns of procrastination or inconsistent
engagement. Moreover, the visual representation
of students’ learning behaviors through the dot
plots offers a comprehensive overview of the
entire class’s progress. Instructors can identify
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common challenges faced by the majority of stu-
dents and adjust their teaching methods accord-
ingly. It also allows for the identification of high-
performing students who may serve as mentors
or peer leaders, promoting a collaborative and
supportive learning environment.

Overall, the utilization of dot plots based on
log data in the ProgEdu system provides instruc-
tors with valuable insights into students’ learning
experiences, enabling them to offer timely sup-
port, identify areas for improvement, and foster a
more productive and engaging learning environ-
ment.

B. Identifying students’ profiles with unsuper-
vised learning

In programming homework assignments, with
behavioral features extracted from the log data,
the authors performed unsupervised learning
tasks to identify distinct groups of students with
varying learning patterns in programming. An
example of this analysis is depicted in Fig-
ure 6, where k-means clustering was applied to
two dimensions: submission efforts (total number
of submissions) and learning achievement (final
scores). The names of the clusters were assigned
based on the relationship between learning styles
and corresponding outcomes as follows:

Cl. Effective learners: These learners are po-
sitioned at the top-left corner of the figure. They
demonstrate exceptional programming problem-
solving skills, achieving high scores with
minimal iterations. They exhibit proactive
behavior by starting and completing their
homework promptly. Moreover, they do not
submit additional attempts once they have
achieved their first success.

C2. High-effort learners: Positioned in the top-
right of the figure, high-effort learners display
comparable final grades to effective learners.
They make a considerable number of submissions
and exhibit determination in studying and itera-
tively solving problems. Despite taking longer to
achieve success compared to effective learners,
they persevere and eventually solve the problems,
albeit not in the most efficient manner.
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Fig. 6: Five clusters of student based on learning behaviors and learning achievement

C3. Average learners: Found in the middle-left
of the figure, average learners exhibit a moderate
number of submissions, falling between effective
and high-effort learners. Their programming ef-
fort is at an average level, and they appear to be
content with their performance. While their final
results are acceptable, they are lower than those
of effective and high-effort learners.

C4. Blind-trial learners: Positioned at the
bottom-right of the figure, blind-trial learners
rely heavily on the submission system, making
numerous attempts. However, despite their exten-
sive trials, they do not achieve results comparable
to effective and high-effort learners. Some of
them even fail to pass the course.

C5. Effortless learners: Plotted at the bottom-
left corner of the figure, effortless learners re-
ceive the lowest scores with a minimal number of
iterations. They tend to give up early and refrain
from resubmitting their code after encountering
failures. Consequently, they have a high likeli-
hood of failing the course.

By examining these distinct learner groups,
the study gains valuable insights into their
learning behaviors, effort levels, problem-solving
approaches, and corresponding outcomes, which
can inform instructional interventions and
support individual student needs.
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Fig. 7: Distribution of member profiles
and free riders in 2D-space
(reduced by using PCA)

In a similar vein, the study employed a
segmentation approach to group students based
on their levels of contribution to the team project.
By utilizing the plain values and contribution
index of metrics presented in Table 2, the
Ward’s minimum variance in an agglomerative
hierarchical clustering method was utilized to
identify three distinct clusters: high contribution
members, average contribution members, and
low-contribution members, as depicted in
Figure 7. It is important to note that the
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instructors had already identified the free
riders during the final presentation, and these
individuals were classified as low-contribution
members in the clustering analysis. Through this
data analysis framework, instructors are equipped
with comprehensive information regarding the
contributions of individual students, allowing
for more informed grading decisions rather than
solely relying on interviews or peer reviews.

C. Identifying at-risk students using supervised
learning

In programming courses, the correlation
between learning patterns and academic out-
comes holds significant value in assisting both
educators and students. To address this, the pre-
diction models that enable the classification of
students based on their learning behaviors during
the early stages of the course have been con-
structed. The targeted variable in this model is
the final result of students, which encompasses
two possibilities: pass or fail. Students identified
within the fail group are classified as at-risk
students and are notified to make adjustments to
their learning behaviors to enhance their learning
outcomes. In this experiment, the data from 69
students of which 11 could not pass the course.
Using just three homework assignments before
the midterm examination, the author managed
to attain a predictive accuracy of 70% utilizing
the K-Nearest Neighbors (KNN) algorithm. The
prediction evaluation by 10-fold cross-validation
KNN, Naive Bayes (NB), Support Vector Ma-
chine (SVM), Decision Tree (DT), Random For-
est (RF), and AdaBoost (AB) is presented in
Table 3.

Table 3: Cross validation results for prediction

models of at-risk students
Non-risk Atrisk
Method | AUC | Acc 71 | Pr | Re | FI Pr | Re
AB 0.73 [080]086]|086[086] 0.61] 0.61]061
KNN | 087 [087]0.91]0.89] 094]0.73]0.80] 0.67
NB 081 [075]081]093]073] 064]052] 083
RF 085 [ 078|085/ 086 084] 0.60] 0.58] 0.61
svM | 068 [071] 082 077 086|033 041]028
DT 0.80 [083]088]088[088]067]067]067
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The results demonstrate the effectiveness of the
prediction models in identifying and classifying
at-risk students. The high accuracy and balanced
values of precision, recall, and Fl-score indi-
cate the reliability and validity of the models in
predicting at-risk students and facilitating timely
interventions.

D. Discussions

The primary objective of conducting Git log
analysis in ProgEdu is to uncover concealed
insights from the learning progress and present
them to the relevant stakeholders. These analyses
serve as the foundation for designing and en-
hancing a learning dashboard within the system.
Reflection is a central aim of any learning ana-
lytics tool, and the dashboard effectively informs
both students and instructors about the current
status of individuals and teams. Key metrics
such as SubmCount, CSF sequence length, TE,
TCI, and others provide valuable information
that empowers students to regulate their learning
behaviors and enables instructors to determine
when and how to intervene. In addition to fos-
tering reflection, prediction capabilities enable
early interventions or warnings that alert students
about critical situations, such as the risk of failing
the course or receiving low final grades, and the
potential consequences of unaddressed technical
debt in the final product. Moreover, the features
extracted for prediction models facilitate student
modeling, leading to recommendations that can
be presented through visualizations like radar
plots. Leveraging the level of student engagement
depicted in the dashboard, interventions can be
automatically generated or manually provided by
instructors.

For instructors, the Git log analysis in ProgEdu
provides a means to track student learning out-
comes and identify areas where additional sup-
port may be required. It enables them to monitor
individual and team performance, identify pat-
terns and trends, and make data-driven decisions
to enhance the teaching and learning experience.

Moreover, students can benefit from Git log
analysis in ProgEdu by gaining insights into
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their own programming journey. They can track
their progress, identify areas of improvement, and
receive timely feedback on their coding practices.
This analysis serves as a reflection tool, allowing
students to self-regulate their learning behavior
and make adjustments to achieve better learn-
ing outcomes. Overall, the Git log analysis task
within ProgEdu contributes to a more effective
and tailored approach to programming education.
By leveraging code-quality-aware analytics, in-
structors and students can collaborate in a struc-
tured manner, leading to improved programming
skills and a deeper understanding of software
development principles.

V. CONCLUSIONS

The current study delves into the Git log anal-
ysis task within ProgEdu, a code-quality-aware
Assessment and Programming Assistance System
(APAS). The primary objective of this analysis
is to provide assistance to both instructors and
students in the realm of programming learning.
By leveraging Git log analysis, ProgEdu offers
valuable insights into the learning process, allow-
ing instructors to gain a deeper understanding of
students’ programming skills and progress. This
analysis takes into account code quality metrics,
such as syntax checking, code quality checking,
and unit testing, to provide a comprehensive
overview of students’ coding abilities.

Based on the findings of this study, a strong
case can be made for higher educational in-
stitutions to prioritize the tracking of students’
learning progress through the utilization of digital
tools, rather than relying solely on traditional
term exams. By incorporating a range of tools
and technologies, educators can gather valuable
insights into students’ behavioral patterns, so
that, educators can gather valuable evidence,
provide targeted feedback, and deliver effective
interventions, ultimately enhancing the quality of
education and supporting student success.
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