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INTERVAL OBSERVER DESIGN FOR A WIND ENERGY
CONVERSION SYSTEM

Loc Phuoc Nguyen1∗, Khai Nguyen Dang2, Tin Trung Chau3, Linh Nguyen4, Ton Duc Do5

Abstract – This research discusses unknown
input interval observers for discrete-time wind
turbine-generator systems. Firstly, the paper
presents a reliable interval observer for a linear
parameter-varying (LPV) system with unknown
and immeasurable parameters. Secondly, systems
should be considered to jointly estimate the state
and unknown inputs. To address this challenge,
the study develops an interval observer for a
discrete-time system incorporating unknown pa-
rameter vectors. These estimating techniques rely
on the insertion of extra weighting matrices to as-
sist in reducing the impact of system uncertainties
and to guarantee the stability and cooperation of
the interval observers. Examples are simulated by
MATLAB/Simulink software to demonstrate the
effectiveness of the algorithms.

Keywords: interval observer, linear
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I. INTRODUCTION

One of the most accessible and promising
renewable energy sources in recent times has
been wind energy. On the one hand, wind tur-
bine installation and upkeep are rather costly.
This issue becomes more significant in the case
of offshore wind turbines. Similar to any other
system, wind turbines can make mistakes. The

1Vinh Long University of Technology Education, Viet-
nam

2PhD student at Conservatoire National des arts et
métiers, Paris, France

3,5School of Eng. and Digital Sciences (SEDS),
Nazarbayev University Astana, Kazakhstan

4Institute of Innovation, Science and Sustainability Fed-
eration University, Australia

*Corresponding author: locnp@vlute.edu.vn
Received date: 30th June 2024; Revised date: 14th

November 2024; Accepted date: 13th January 2025

control system is essential to identify, mitigate,
and accommodate problems in wind turbines as it
has access to data from several wind turbine com-
ponents. Unplanned maintenance can be expen-
sive for an offshore wind turbine. Consequently,
it’s imperative to design a control system that
can autonomously detect and isolate issues as
they emerge, maintain the wind turbine’s overall
functionality, and provide enough performance
for the broken system without requiring it to be
shut down.

Interval observers explain an essential method
for managing systems impacted by diverse dis-
ruptions and measurement noise. They give upper
and lower limits on the actual state using a
dynamic structure with two outputs of Şahin
[1]. Understanding the limits of starting state
values and measurement noise and disruptions is
necessary for this sophisticated kind of observer.
Even with these constraints usually satisfied in
practical settings interval estimation overcomes
the drawbacks of classical observers, who can
only provide asymptotic estimates without dis-
ruptions. This method is built on the theoretical
basis of Kara el al. [2] and has been extended to
a variety of domains, such as linear systems in
studies conducted by Zhao et al. [3], Chan et al.
[4], McMillan et al. [5], nonlinear systems from
Peng et al. [6], fuzzy systems of Tinga [7], and
applications such as fault detection, control, and
monitoring of Kim et al. [8] and Calabrese et al.
[9].

Real systems frequently experience noise, in-
terruptions, and uncertain inputs. For wind tur-
bine systems, this situation has been studied
by Lei et al. [10], Heo et al. [11], Venkata et
al. [12], and Liu et al. [13]. Continuous-time
wind turbine systems with uncertain inputs have
also been the subject of some investigations [14,
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15]. However, there has not been a thorough
discussion in the literature yet about the design of
interval observers for discrete-time wind turbine
systems with uncertain inputs. However, because
switching the system from continuous to discrete
time modifies stability features and necessitates
correcting the estimating technique for the un-
known input, the estimators suggested in this
study are not directly derived.

Firstly, a novel observer structure that pro-
vides additional design degrees of freedom and
loosens design requirements is developed in this
work, which makes three primary contributions.
Secondly, it concurrently gives interval estimates
of states and unknown inputs for an uncertain
discrete-time linear system. Lastly, the interval
approach is used to ensure that the condition
and aerodynamic torque of a wind turbine are
estimated.

Below is the arrangement of the article: In Part
II, the principal findings are outlined and sup-
ported. Section III concludes the work with con-
cluding observations. Section IV then presents
the simulation findings, which are presented and
contrasted with the method of Wang et al. [16].

II. MAIN RESULTS

A. Studied system

The system operates discretely inside the ex-
amined wind energy conversion system of Le et
al. [17].

Where:
ω(k) ∈ R,y(k) ∈ R,Te ∈ R,Ta ∈ R,d(k) ∈ R

are the state, the measured, the electromagnetic
torque, the aerodynamic torque that needs to be
estimated, and the unknown disturbance vectors,
respectively.

The value is defined as follows: ad =
B
J
,bd =

1
J
, fd =

1
J+∆J

, where J represents the mechan-
ical inertia, B denotes the coefficient of viscous
friction, and fd corresponds to the coefficient of
noise.

Both the disturbance d(k) and the starting
condition of ω(k) are limited yet uncertain.

where ω(k), ω̄(k),d, d̄ are known vectors.

B. Preliminary transformation

From Equation (1), the study obtained an equa-
tion as Equation (4).

Equation (1) may be recast into a discrete-
time LTI descriptor system as sot Equation (5)
by interpreting the unknown inputs as auxiliary
states.

where:

Without loss of generality, it is assumed that
Equation (5) is observable [18, 19].

C. Interval observer for state and disturbance

The observer is introduced as Equation (6).

Where T ∈ R(2× 2)andN ∈ R(2× 1) are the
matrices to be chosen as Equation (7).

For example, it can be chosen for all real values
t12 and t22:
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Thus, we have a notation as Equation (8).

The following results are now ready to be
stated and proved:

Theorem 1. If there exists a matrix L ∈ R(2×
1) such that TAd −LCd ≥ 0 and TAd −LCd Schur
stable then (6) is an interval observer for the state
and the aerodynamic torque of (1).

Proof. Initially, we shall rewrite Equation (5)
by multiplying both sides of the equation T.

Equation (8) is used to replace EdT = I−CdN
obtained

For each, the upper and lower error equations
are taken into account.

The goal is to demonstrate the non-negative
and limited nature of ē(k) and e(k). The follow-
ing describes the upper and lower error dynamics.

From Equations (6) and (11) we obtain:

And the following lemma is presented.

Lemma 1: Given a vector xkwithx−k ≤ xk ≤ x+k
and matrix A, the inequalities hold.

where A+ = max[0,A] and A− = A+−A.
With the Inequality (13), we can transform it

into a new inequality as follows:

By incorporating the above inequality with the
disturbance Equation (3), we can derive that:

Then, to have a non-negative upper bound er-
ror, the equation TAd −LCd must be non-negative
(i.e., TAd −LCd ≥ 0). We can deduce the same
conclusion for the lower bound error. Therefore,
we need to choose L such that TAd −LCd is non-
negative and Schur stable. In the above example,
when the size dimension is 2, and the form of
the T and N matrices can be specified, one can
choose.

such that
ad

bd
− l21 ≥ 0. An example of the

simulation will be given in the upcoming Section
III.

III. SIMULATION EXAMPLE

Example 1. We will start with a continuous-
time system in this instructive example, which
has the system equation:

The value and disturbance must be estimated
when certain uncertainties and unknown distur-
bances exist (d). They have specific criteria in
Table 1 that make them quantifiable.
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Table 1: The system parameters

Te is computed using the accompanying for-
mula:

with a blade length of 10 m and an efficiency
of 40%, operating at a voltage of 220 V for 1
second at a speed of 15 km/h, air pressure of
1,013.25 hPa at 15oC, and ϕ = 0.2867 V.S/rad,
Np = 14, iq = 25 A. With (ngb = 1), we shall
discretize the aforementioned system using the
notion of derivation:

∆t will have an approximate value of 0. We
can also set:

and rewrite the system by multiplying the ∆t:

We can rewrite the system in the form of
equation (4) and have the following matrices:

Once the numerical value is applied, we ob-
tain:

The matrix T, N, and L has the following form:

such that
ad∆t −1

bd∆t
− l21 ≤ 0. The status of

the simulation findings is as follows, with the
disruption shown as Figure 1.

Fig. 1: Real state and Simulation of x in
MATLAB

Fig. 2: Real and Simulation of disturbance in
MATLAB

The estimated boundaries using the interval
observer in Wang et al. [16] and the interval
estimation results produced using the author’s
technique are displayed in Figures 1 and 2.
Compared to the boundaries predicted by the
interval observer in Wang et al. [16], the interval
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estimates supplied by the suggested technique are
more accurate representations of the real states.
This result validates the suggested observer’s
robustness.

Example 2. We will start this part by simulat-
ing a wind turbine using the Simulink system and
the LQR controller. This section presents Sim-
ulation experiments demonstrating the proposed
control mechanism’s effectiveness. Let’s examine
a WECS with table 2 specs that are based on
a PMSG. The wind profile is chosen with a
turbulence intensity of 10% and a mean veloc-
ity of 12.13 m/s. The construction of observer
equation (6), which is provided in two figures, is
inspired by the profile shown in Figure 3. Figure
4 displays the block diagram of the suggested
interval observer.

Table 2: Wind energy conversion system
parameters

Figure 5 shows that ω̄(k) ≤ ω(k) ≤ ω(k),
meaning that the actual state ω(k) is consis-
tently situated between the higher state ω̄(k) and
lower ω(k). Similarly, Figure (6) demonstrates
that Ta(k) ≤ Ta(k) ≤ T̄a(k), signifying that the
disturbance Ta(k) is consistently situated between
the upper state Ta(k) and lower T̄a(k).

The interval estimation results obtained from
the proposed technique are shown in Figure (5),
together with the boundaries determined using
the interval observer described in the study of
Wang et al. [16]. Comparing the interval es-
timates from the suggested technique with the

Fig. 3: Profile of wind speed with a mean speed
of 12.13 meters per second
from Suleimenov et al. [21]

Fig. 4: Machine-side portion of WECS’s
back-to-back power converters

Fig. 5: The state ω and interval estimated
bounds ω̄ , ω
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Fig. 6: The unknown input Ta and interval
estimations T̄a, Ta

boundaries calculated by the interval observer in
Wang et al. [16], the technique is closer to the
real states and more accurate. This proves that
the suggested observer is resilient.

The simulation results indicate that this inter-
val observer architecture works well when the
upper and lower bounds constrain the primary
states. This research allows for interval estimation
of the disturbance and the system state, both of
which have an effect on the system as a whole.

IV. CONCLUSION

This research investigates a state interval ob-
server and simultaneous input for uncertain wind
turbine switching systems. It employs a novel
strategy based on the (T-N-L) technique to handle
the effects of unknown disturbances and measure-
ment noise, enabling the simultaneous estimate
of the state vector and the unknown input. An
interval observer with new, more flexible ma-
trices is part of the design. The method’s effi-
ciency is demonstrated by the simulation results.
Subsequent research endeavors may further refine
the norm-based design methodology and expand
its use to Linear-Parameter Varying switching
systems.
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[1] Şahin AD. Progress and recent trends
in wind energy. Progress in Energy and
Combustion Science. 2004;30(5): 501–543.
https://doi.org/10.1016/j.pecs.2004.04.001.
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