Main Article Content

Quoc Kien Giang
Thuy Mong Lam
Duy The Phan


The efficiency of caffeine recovery during extraction with highpressure hot-water solvent was investigated to find out the conditions for maximum caffeine recovery in roasted coffee powder. In addition, to support the extraction process with high-pressure hot-water solvent, cellulase enzyme pretreatment of roasted coffee powder is also applied and has demonstrated the supporting role of the enzyme in improving caffeine extraction efficiency. CO2 can participate in the extraction process with the role of changing the pH of the solvent at the high temperature and obtained positive results. In the presence of the enzyme cellulase at a
value of 8 UI/g, the pretreatment time was 90 minutes; the extraction process performed at 110oC for temperature and 10 min for the extraction time, the efficiency of caffeine recovery can reach 96,36 ±


Download data is not yet available.

Article Details

How to Cite
Giang Q, Lam T, Phan D. ENHANCEMENT OF CAFFEINE RECOVERY FROM ROASTED COFFEE POWDER BY ENZYME CELLULASE PRETREATMENT, HOT-WATER EXTRACTION AND CO2-ADDING. journal [Internet]. 30Dec.2020 [cited 15Jun.2024];10(40):103-11. Available from: https://journal.tvu.edu.vn/index.php/journal/article/view/621


[1] Bộ Nông nghiệp Mỹ (USDA). Coffee. World
Markets and Trade; 2020.
[2] Trần Quang Ngọc. Nghiên cứu tách caffeinee từ hạt cà phê bằng phương pháp trích
li dung môi có hỗ trợ vi sóng [Đồ án tốt
nghiệp]. Trường Đại học Nha Trang. 2018.
[3] Nguyễn Tiến Lực. Nghiên cứu trích li hoạt
chất caffeine từ cà phê bằng phương pháp
vi sóng [Đồ án tốt nghiệp]. Trường Đại học
Sư phạm Kỹ thuật Thành phố Hồ Chí Minh.
[4] Nguyễn Phương Quyên, Nguyễn Thị Ngọc
Tuyết, Lê Thị Kim Phụng, Phạm Thành
Quân. Xác định hàm lượng caffeine và thành
phần hương cà phê từ một số sản phẩm cà
phê rang xay và hòa tan trên thị trường Việt
Nam. Tạp chí Phát triển Khoa học và Công
nghệ. 2015; 18(K3):85–93.
[5] Nguyễn Đức Lượng. Công nghệ Enzyme.
TP. Hồ Chí Minh : Nhà Xuất bản Đại học
Quốc gia TP. Hồ Chí Minh; 2012.
[6] Chee-hway Tsai. Enzymeatic treatment of
black tea-leaf. US4639375A; 1983.
[7] Petersen B.R. Enzymeatic method for production of instant tea. US4483876A; 1984.
[8] Lucia Gardossi, Poul B.Poulsen, Antonio
Ballesteros, Karl Hult, Vytas K.Svedas, ˇ
Đurđa Vasic-Ra ´ cki, et al. Guidelines for ˇ
reporting of biocatalytic reactions. Trends
Biotechnology. 2010; 28:171–180.
[9] Sowbhagya H.B, Chitra V.N. Enzymeassisted extraction of flavorings and colorants from plant materials. Critical Review
Food Science and Nutrition. 2010; 50:146–
[10] Wahyudiono W, Machmudah S, Goto M.
Utilization of sub and supercritical water reactions in resource recovery of
biomass wastes. Engineering Journal. 2013;
[11] Héctor A.Ruiz, Rosa M.Rodríguez-Jasso,
Bruno D.Fernandes, António A.Vicente,
José A.Teixeira. Hydrothermal processing,
as an alternative for upgrading agriculture
residues and marine biomass according to
the biorefinery concept: a review. Renewable Sustainable Energy Reviews. 2013;
[12] Hunter S.E, Savage P.E. Acid-catalyzed reactions in carbon dioxide-enriched hightemperature liquid water. Industrial Engineering Chemistry Research. 2003; 42:290–
[13] Moreschi S.R.M, Petenate A.J, Meireles
M.A. Hydrolysis of ginger bagasse starch in
subcritical water and carbon dioxide. Journal of Agricultural and Food Chemistry.
2004; 52:1753–1758.
[14] Van Walsum G.P, Shi H., Carbonic acid
enhancement of hydrolysis in aqueous pretreatment of corn stover. Bioresource Technology. 2004; 93:217–226.
[15] Giovanni C, Manuela C, Gianni S, Sauro V.
The influence of different types of preparation (espresso and brew) on coffee aroma
and main bioactive constituents. International Journal of Food Sciences and Nutrition. 2015; 505–513.